Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

Scheme of Studies:

S.No	Board of	Course Course		Sch	eme of S	itudies (Hours/Week)
3.100	Study	Code	Titles	L	Р	Т	Credit L+(P+T)/2
1	Humanities	2000251(046)	Communication Skills-II	4		1	5
2	Applied Science	2000252(014)	Applied Maths-II	3		1	4
3	Applied Science	2000253(011)	Applied Chemistry	3		1	4
4	Applied Science	2000254(015)	Applied Physics	3		1	4
5	Mechanical Engineering	2000255(037)	Basic Non-Conventional Energy Sources	1		1	2
6	Mechanical Engineering	2000256(037)	Engineering Drawing	2		4	4
7	Applied Science	2000261(011)	Applied Chemistry (Lab)		3		2
8	Applied Science	2000262(015)	Applied Physics (Lab)		3		2
9	Mechanical Engineering	2000263(037)	Basic Non-Conventional Energy Sources (Lab)		3		2
10	Humanities	2000264(046)	Seminar & Technical Presentation Skill Part-II		2		1
	Total				11	9	30

L - Lecture, T - Tutorial, P - Practical,

Legen Lecture (L) --> CI : Classroom Instruction (Includes different instructional strategies i.e. Lecture and others).

Practical (P) --> LI : Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies.

Tutorial (T) --> SL : Self Learning.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

	Decodef	0	0		Sche	eme of	Exam	inatior	ו
S.No	Board of Study	Course Code	Course Titles	Theory			Practical		Total
				ESE	СТ	ТА	ESE	ТА	Marks
1	Humanities	2000251(046)	Communication Skills-II	100	20	30			150
2	Applied Science	2000252(014)	Applied Maths-II	100	20	30			150
3	Applied Science	2000253(011)	Applied Chemistry	100	20	30			150
4	Applied Science	2000254(015)	Applied Physics	100	20	30			150
5	Mechanical Engineering	2000255(037)	Basic Non-Conventional Energy Sources			30			30
6	Mechanical Engineering	2000256(037)	Engineering Drawing	100	20	30			150
7	Applied Science	2000261(011)	Applied Chemistry (Lab)				50	20	70
8	Applied Science	2000262(015)	Applied Physics (Lab)				50	20	70
9	Mechanical Engineering	2000263(037)	Basic Non-Conventional Energy Sources (Lab)				50	20	70
10	Humanities	2000264(046)	Seminar & Technical Presentation Skill Part-II					10	10
	Total			500	100	180	150	70	1000

ESE : End of Semester Exam, CT: Class Test, TA: Teachers Assessment

Legend :- PRA : Process Assessment, PDA : Product Assessment.

Note :- i) TA in Theory includes Sessional work (SW) and Attandance (ATT) with weightage of 70% and 30% of total respectively.

ii) TA in Practical includes performance of PRA, PDA and Viva-Voce with weightage of 50%, 40% and 10% of total respectively.

iii) 85% attendance is essential in theory & Practical classes appear in examinatin.

Scheme of Examination:

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	:	2000251(046)
B)	Course Title	:	Communication Skills-II
C)	Pre- requisite Course Code and Title	:	

D) Rationale

In the present competitive world communication skills are vital for growth in any field. Communication Skills in English is one of the core skills to be developed in diploma holders as students exchange information and convey their ideas and opinions with different stakeholders. The present curriculum continues to focus on the attainment of course outcomes related to speaking, reading, writing and listening as verbal, non-verbal and written communication are essential in order to deliver and receive information quickly and accurately.

This curriculum is advancement over the previous to meet the existing industrial and entrepreneurial challenges by focusing on the attainment of professional communication skills and enable the students for effective communication in diverse situations.

E) Course Outcomes:

- CO-1 Use grammatically correct sentences in Speaking and Writing.
- CO-2 Demonstrate appropriate non-verbal expression while communicating with others.
- CO-3 Draft letters notices and circulars using correct formats.
- CO-4 Draft different types of report in prescribed format.

F) Scheme of Studies:

S.No.	Board of Study	Course Code	Course Title	Scheme of Studies (Hours/Week)			udies (Hours/Week)
			L	Р	Т	Total Credit L+(P+T)/2	
1.	Humanities	2000251(046)	Communication Skills-II	4	-	1	5

Legend: L-Lecture, P-Practical, T-Tutorial

G) Scheme of Assessment:

,	S. No	Board of Study	Course Code	Course Scheme of Examina Title		Schem		minat	ion	
		Study	oouc	mie	Theory		Practical		Total Marks	
					ESE	СТ	ТА	ESE	TA	IVIdI KS
	1.	Humanities	2000251(046)	Communication Skills-II	100	20	30	-	-	150

Legend: ESE: End Semester Exam, CT: Class Test, TA: Teacher Assessment

Note: Separate passing is must for End Semester Assessment.

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-1 Use grammatically correct sentences in Speaking and Writing.

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1 Use infinitives in proper place SO1.2 Make basic sentence pattern SO1.3 Change Narration SO1.4 Use different degree in sentences SO1.5 Correct Use of Adverbial Phrases.	LE1.1 Prepare grammatically correct sentences as per	Unit-1.0 English Grammar 1.1 Basic Sentence Patterns	 One Word Substitution Rearrangement of Jumbled words

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Exercises on the topic: Modifiers, Narration, Infinitives, Degree etc.

- b. Mini Project:
 - i. Express your views by writing an incidence using proper grammar.
 - ii. Select topic and share your views on the same with the audience. (2-3 min.)

c. Other Activities (Specify):

i. Practice for speaking skills in front of mirror for self feedback.

CO-2 Demonstrate appropriate non-verbal expression while communicating with others in different situations.

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning (SL)
(SOs)	(LI)	(CI)	
SO2.1 Explain the use of static and dynamic features of non verbal communication. SO2.2 Interpret the gesture, posture and facial expression in the given photograph and visual.	LE2.1 Use appropriate gestures, eye movements, facial expressions, postures for communication. LE2.2 Demonstrate appropriate etiquettes while working in team and group.	Unit-2.0 Non-Verbal Communication 2.1 Static features of Non Verbal Communication – Distance, Posture, Physical contact etc. 2.2 Dynamic features of Non-Verbal Communication – Mannerism, Head & Hand movement, Eye to Eye contact, Facial expressions, Gestures 2.3 Barriers of Communication:	Collect data about good postures, expressions, visuals related to non verbal communication for Effective Communication.

Dip	oloma in Civil/Electri	Semester - II		
	Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning (SL)
			Physical, Semantic and Socio- psychological	

SW-2 Suggested Sessional Work (SW):

Assignments: •

- i. Collection of pictures and visuals with static and dynamic features of non verbal communication.
- ii. Interpretation of gesture, posture and facial expression in the given photograph and visual.

Mini Project: •

i. Seminar on topics related to "Role of non verbal communication for developing effective communication in technical education".

Other Activities (Specify):

Role play on given theme such as: When a student gets exceptionally good marks or less i. marks in 10th board exams, bank manager refuses to sanction the education loan at the last moment, unrest among the first year students during fresher party. Student and teacher can add the themes as per requirement.

CO-3 Draft letters, notices, circulars using correct format.

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning (SL)
(SOs)	Instruction (LI)		_
	_	Unit- 3.0 Paragraph &Letter Writing3.1 Paragraph writing.3.2 Letter writing3.2.1 Purposes of Letters3.2.2 Characteristics of a Letter3.2.3 Mechanics and Style3.2.4 Types of Business LettersApplications for Job & Resume Writing3.2.5 Letter of Enquiry3.2.6 Letter for Order Placement3.2.7 Letter of Complaints/Faults (to appropriate authorities)	 Read the sample letter, circular, notice, case and paragraph on selected theme on Internet.

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

SW-3 Suggested Sessional Work (SW) :

• Assignments:

- i. Prepare summary of the given incident in the shop floor/office/institute.
- ii. Write an application to apply for campus recruitment drive to be held in your college.
- iii. Draft business letters.

b. Mini Project:

- i. Prepare Resume and cover letter for job vacancy.
- ii. Write a letter to appropriate authority informing about the activities to be conducted in department/Institute.

c. Other Activities (Specify):

i. Analyze the given case and suggest views/opinion with respect to case brief.

CO-4 Draft different types of report in prescribed format.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Explain style and mechanics of a good report. SO4.2 Prepare project report as per given direction SO4.3 Prepare Technical reports in given format. SO4.4 Draft Notices and circulars	LE4.1 Prepare reports on given situations	 Unit 4.0 Technical Report Writing 4.1 Characteristics of a Good Report. 4.2 Forms of Technical Report 4.3 Types of Technical Report. 4.4 Format of Project Report, Guidelines for writing Project Report, Notices and Circulars. 	Read and practice different Types of Reports.

SW-4 Suggested Sessional Work (SW) :

a. Assignments:

i. Prepare notice and circular for your class/department as per given directions.ii. Describe qualities of a good report.

b. Mini Project:

i. Draft a report on any significant activity that had taken place in your locality.li. Draft a report on culture event/ sports event conducted at your institute.

c. Other Activities (Specify):

i. Draft notices for sports activities/ lost belongings/ various competitions/celebrations.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit Unit Titles		M	Marks Distribution			
Number		R	U	Α	Marks	
I	English Grammar	4	8	18	30	
II	Non verbal communication	2	5	8	15	
	Paragraph & Letter Writing	3	7	15	25	
IV	Technical Report writing	3	7	20	30	
	Total	12	31	57	100	

Legend: R: Remember, U: Understand, A: Apply and above

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

L) Suggested Learning Resources:

(a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	English Grammar in Use	Murphy Raymond	Cambridge Publications	4 th Edition
2	Living English Structure	Allen	Cambridge Publications	Fifth edition(2009)
3	Effective English with CD	Kumar, E. Suresh; Sreehari,P.; Savithri, J.	Pearson Education, Noida, New Delhi	2009 ISBN: 978-81- 317-3100-0
4	English Grammar at Glance	Gnanamurali, M.	S. Chand and Co. New Delhi,	2011 ISBN:9788121929042
5	A Course in Technical English	TTTI Bhopal		
6	Elementary English Grammar and Composition	Agarwal N.K.	Goyal Brothers Prakashan	Latest Edition

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

(b) Open source software and website address:

- 1. <u>https://www.englishgrammar.org/</u>
- 2. <u>http://www.englishgrammarsecrets.com/</u>
- 3. https://www.usingenglish.com/handouts/
- 4. http://learnenglish.britishcouncil.org/en/english-grammar
- 5. https://www.englishclub.com/grammar/
- 6. <u>http://www.perfect-english-grammar.com/</u>
- 7. http://www.englishteachermelanie.com/category/grammar/
- 8. https://www.grammarly.com/blog/category/handbook
- 9. https://www.britishcouncil.in/english/learn-online
- 10. http://learnenglish.britishcouncil.org/en/content
- 11. http://www.talkenglish.com/
- 12. languagelabsystem.com
- 13. www.wordsworthelt.com

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Language software Manual
- 4. Users' Guide

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1	Computers	A complete computer system with headphones & Speakers	All
2	Software	English Communication Softwares – Globarina, A- One Solutions, Wordsworth, Spears	All
3.	Computer tables & chairs	Depending upon the size of the Language Lab	All

Semester - II

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)								Programme Specific Outcomes (PSOs)			
	PO-1 Basic knowledge			-	engineer	PO-6 Environmen t and sustainabilit y		PO-8 Individual and team work	PO-9 Communi cation	PO-10 Life- long learning	PSO- 1	PSO- 2
CO-1 Use grammatically correct sentences in Speaking & Writing.	2	1	1	1	-	-	-	1	2	3	1	1
CO-2 Demonstrate appropriate non-verbal expression while communicating with others.	1	1	2	2	-	-	-	2	2	3	1	1
CO-3 Draft letters, notices and circulars using correct formats.	1	1	1	2	-	-	-	1	3	2	1	1
CO-4 Draft different types of report in prescribed format.	2	1	2	2	-	1	-	2	3	2	1	1

Legend:1 – Low, 2 – Medium, 3 – High

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO1,2,3,4,8,9,10 PSO 1,2	CO-1 Use grammatically correct sentences during Speaking & Writing.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	LE1.1 LE1.2	Unit-1.0 English Grammar 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO 1,2,3,4,8,9,10 PSO 1,2	CO-2 Demonstrate appropriate non- verbal expression while communicating with others.	SO2.1 SO2.2	LE2.1 LE2.2	Unit-2.0 Effective Communication 2.1, 2.2, 2.3, 2.4, 2.5	As mentioned in page relevant
PO 1,2,3,4,8,9,10 PSO 1,2	CO-3 Draft letters, notices and circulars using correct formats	SO3.1 SO3.2	LE3.1	Unit-3.0 Short Stories 3.1 , 3.2,3.3,3.4	pages
PO 1,2,3,4,6,8,9,10 PSO 1,2	CO-4 Draft different types of report in prescribed format.	SO4.1 SO4.2 SO4.3	LE4.1	Unit- 4.0 Passages for Comprehension 4.1, 4.2, 4.3, 4.3, 4.4, 4.5, 4.6,4.7,4.8	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	: 2000252(014)
B)	Course Title	: Applied Maths-II
C)	Pre- requisite Course Code and Title	:
D)	Rationale	:

This subject is introduced to those topics of mathematics, which are applied in different branches of engineering so that it can enhance required skills in mathematics underpinning engineering subjects. Integral calculus helps to find the area; differential equation is used in finding the curves and its related applications for various engineering models. Numerical integration is used to find the area of the functions especially whose integration cannot be evaluated easily with routine methods. This course further develops the skills to enable a large range of engineering systems to be modeled.

E) Course Outcomes:

- CO-1 Solve the given problems of integration using suitable methods.
- CO-2 Use the concept of integration to find area of given curves.
- CO-3 Model the given engineering problems using the concept of differential equation.
- CO-4 Utilize the concepts of numerical methods to solve given equations.
- CO-5 Measure the area using the concept of numerical integration for engineering related problems.

F) Scheme of Studies:

S.No	Board of Study	Course Code	Course Title	Scheme of Studies (Hours/Wee		(Hours/Week)	
				L	Р	Т	Total Credit L+(P+T)/2
1.	Applied Science	2000252(014)	Applied Maths-II	3	-	1	4

Legend: L-Lecture, P-Practical, T-Tutorial

G) Scheme of Assessment:

S. No	Board of Study	Course Course Scheme of Exame Code Title				aminati	on		
	otaaj			Theory		Practical		Total Marks	
				ESE	СТ	TA	ESE	TA	IVIAL KS
1	Applied Science	2000252(014)	Applied Maths-II	100	20	30	-	-	150

Legend: ESE: End Semester Exam, CT: Class Test, TA: Teacher Assessment

Note: Separate passing is must for End Semester Assessment.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Solve the given problems of integration using suitable methods.

(Approx. Hrs: 12)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Solve the given simple problem(s) based on rules of integration.		Unit-1.0 Integral Calculus 1.1 Simple Integration: Rules of integration and integration of	1.1 (a) Rules of integration
SO1.2 Obtain the solution of given simple integral(s) using substitution method.		standard functions. 1.2 Methods of Integration: 1.21 Integration by substitution.	1.2 (a) Methods of integration.
SO1.3 Integrate given simple functions (integration by parts). SO1.4 Evaluate the given simple integral by using partial fractions.		1.22 Integration by parts 1.23 Integration by partial fractions.	or integration.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i Expound examples of integration in day-to-day life.
- ii Enumerate the value of integrals for engineering related problems.

b. Mini Project:

- i Prepare charts displaying standard integration formulas.
- ii Identify problems based on application of integration.

c. Other Activities (Specify):

- i Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- ii Use graphical software EXCEL, D-PLOT and GRAPH for related topics.
- iii Use MATHCAD as mathematical tool to solve the problems of integral calculus.
- iv Prepare a seminar on basic applications of integrals.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-2 Use the concept of integration to find area of given curves.

			(Approx. Hrs: 18)
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Solve given simple problems based on properties of definite integration. SO2.2 Apply the concept of definite integration to find the area under the given curve (s). SO2.3 Utilize the concept of definite integration to find area between given two curves. 		 Unit-2.0 Applications of Integral Calculus 2.1 Definite Integration 2.11 Simple examples 2.12 Properties of definite integral (without proof) and simple examples. 2.2 Applications of integration 2.21 Area under the curve. 2.22 Area between two curves. 	 2.1(a) Standard formulas of simple integration 2.1(b) Properties of definite integrals. 2.2(a) Formulas for area between two curves

SW-2 Suggested Sessional Work (SW):

• Assignments:

- i. Enumerate the area of irregular shapes by using concept of integration.
- ii. Explore the use of definite integrals related to engineering applications.

• Mini Project:

i. Prepare charts showing area of irregular shapes using concept of integration.

• Other Activities (Specify):

- i. Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- ii. Use graphical software EXCEL, D-PLOT and GRAPH for topics related to Integral calculus.
- iii. Use MATHCAD as mathematical tool to solve the problems of integral calculus.
- iv. Seminar on engineering applications of definite integrals.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-3 Model the given engineering problems using the concept of differential equation.

			(Approx. Hrs: 18)
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Find the order and degree of given differential equation(s).		Unit-3.0 Differential equations of first order and first degree 3.1 Concept of differential	3.1(a) Terminologies of differential equations.
SO3.2 Form differential equation for given simple engineering problem.		3.2 Order, degree and formation of differential equation.	3.2(a) Formation, order and degree of differential equations.
SO3.3 Solve given differential equation using the variable separable method.		3.3 Solution of differential equation3.31 Variable separable form.	3.3(a) Methods of
SO3.4 Obtained the solution of given Homogeneous Differential Equation.		3.32 Homogeneous Differential Equations	solution of differential equation
SO3.5 Solve the given linear differential equations.		3.33 Linear differential equation.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i Enumerate population growth using the concept of differential equations.
- ii Use initial conditions to solve differential equations for engineering applications.

b. Mini Project:

- i Prepare flow charts showing various methods for solving first order first-degree differential equations.
- ii Prepare model showing the applications of differential equation for Newton's law of cooling.
- iii Prepare models using the concept of differential equations for mixing problem.

c. Other Activities (Specify):

- i Identify engineering problems based on real world with the use of free tutorials available on the Internet.
- ii Use graphical software EXCEL, D-PLOT and GRAPH for applications of differential equations and related topics.
- iii Use MATHCAD as mathematical tool to solve the problems of engineering related to differential equations.
- iv Identify engineering problems related to differential equations.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-4 Utilize the concepts of numerical methods to solve given equations.

			(Approx. Hrs: 12)
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Determine the roots		Unit-4 Numerical Solutions of	4.1(a) Roots of
of given equations using		Equations	equations by
Bisection method.		Introduction of algebraic and transcendental equations	Bisection Method
SO4.2 Calculate the roots of given equations using Regula Falsi method.		4.1 Bisection method	4.2(a) Roots of equations using Regula Falsi Method
3		4.2 Regula Falsi method	3
SO4.3Compute the roots			4.3(a) Solution of
of given equations using		4.3 Newton Raphson method	equations using
Newton-Raphson method.			Newton-Raphson Method

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Write algorithm to find the approximate roots of algebraic equations.
- ii. Write algorithm to find the approximate roots of transcendental equations.

b. Mini Project:

- i. Prepare graph showing the roots of algebraic equation.
- ii. Prepare graph for finding the roots of equation by Regula falsi method.
- iii. Prepare graph for finding the roots of equation by Newton-Raphson method
- iv. Prepare a seminar on any relevant topic based on numerical method.
- v. Identify suitable numerical methods for engineering related problems.

c. Other Activities (Specify):

- i. Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- ii. Use graphical software EXCEL, D-PLOT and GRAPH for related topics.
- iii. Use MATHCAD as mathematical tool to solve the given equations by numerical methods

CO-5 Measure the area using the concept of numerical integration for civil engineering. (Approx. Hrs: 20)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Apply the concept		UNIT 5.0 Numerical Integration	5.1(a) Integration by
of Numerical integration to find area from given		Introduction to Numerical integration	Trapezoidal rule.
data by Trapezoidal rule		5.1 Trapezoidal rule	5.2(a) Integration by
SO5.2 Utilize the concept of Numerical integration		5.2 Simpson's one third rule	Simpson's one-third rule.
to find area from given data by Simpson's one		5.3 Simpson's three eighth rule	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning (SL)
third rule			5.3(a) Integration by
			Simpson's three
SO5.3 Use the concept of			eighth rule.
Numerical integration to			
find area from given data			
by Simpson's three eighth			
rule.			

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Prepare chart showing the different formulas of numerical integration.
- ii. Compare the results obtained by Trapezoidal and Simpson's rule for area related problems.
- iii. Explore the role of numerical integration in engineering related problems.

a. Mini Project:

- i Prepare a seminar on different methods of numerical integration.
- ii Prepare a model showing the civil engineering applications of numerical integration.

b. Other Activities (Specify):

- i Identify engineering problems based on real world problems with the use of free tutorials available on the Internet.
- ii Use graphical software EXCEL, D-PLOT and GRAPH for related topics.
- iii Seminar on applications of numerical integration.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit Title		Total			
Number		R	U	A	Marks	
	Integral Calculus	4	6	10	20	
	II Applications of Integral Calculus		6	10	20	
III	Differential equations of first order and first degree	4	6	10	20	
IV	Numerical Solutions of Equations	4	6	10	20	
V	Numerical Integration	4	6	10	20	
	Total	20	30	50	100	

Legend: R: Remember, U: Understand, A: Apply and above

Semester - II

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

J) Suggested Specification Table (For ESE of Laboratory Instruction*): NA

Laboratory Instruction Number	Short Laboratory Experiment Title	Assessi			
		Perfo	rmance	Viva-Voce	
		PRA	PDA		
-	-	-	-	-	-

*Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practical,

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to performed at the end semester examination of Marks as per assessment Scheme.

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Industrial visits
- 6. Industrial Training
- 7. Field Trips
- 8. Portfolio Based Learning
- 9. Role Play
- 10. Demonstration
- 11. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)
- 12. Brainstorming
- 13. Others

L) Suggested Learning Resources:

(a) Books :

SI. No.	Title	Author	Publisher	Edition & Year
1	Advanced Engineering Mathematics	Krezig, Ervin	Wiley Publ., New Delhi	2014, ISBN: 978-0-470-45836-5
2	Advanced Engineering Mathematics	H. K. Das	S. Chand & Co, New Delhi	ISBN: 9788121903455
3	Higher Engineering Mathematics	B. S. Grewal	Khanna Publ., New Delhi	2015, ISBN: 8174091955
4	Engineering Mathematics, Volume 1	S. S. Sastry	PHI Learning, New Delhi	2009, ISBN: 978-81-203-3616-2
5	A text book of Engineering Mathematics	Dutta, D	New age International publications, New Delhi	2006 ISBN: 978-81-24- 1689-3
6	Getting Started with MATLAB-7	Pratap, Rudra	Oxford University Press, New Delhi,	2009 ISBN: 0199731241

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

(b) Open source software and website address:

- 1 <u>www.scilab.org/</u> -SCI Lab
- 2-www.dplot.com/ -DPlot
- 3 www.allmathcad.com/ -MathCAD
- 4 www.wolfram.com/mathematica/ MATHEMATICA
- 5. www.easycalculation.com

(c) Others:

- 5. Learning Packages.
- 6. Lab Manuals.
- 7. Manufacturers' Manual
- 8. Users' Guide

M) List of Major Laboratory Equipment and Tools: NA

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
-	-	-	-

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)	Programme Outcomes (POs)								Programme Specific Outcomes (PSOs)			
	Basic knowledge PO-1	Discipline knowledge PO-2	Experiments & Practice PO-3	Engineering Tools PO-4	The Engineer & Society PO-5	Environm ent & Sustainabi lity PO-6	Ethics PO-7	Individual & Team work PO-8	Communi cation PO-9	Life Long learning PO-10	PSO-1	PSO-2
CO-1	V	٧	V	-	-	-	-	V	V	V		
CO-2	V	V	V	-	-	-	-	V	V	V		
CO-3	V	V	V	-	-	-	-	V	V	V		
CO-4	V	V	V	-	-	-	-	V	V	V		
CO-5	V	V	V	-	-	-	-	V	V	V		

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

O) Course Curriculum Map:

POs & PSOs No.	COs No. & Title.	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO-1, 2,3,8,9,10	CO-1 Solve the given problems of integration using suitable methods.	SO1.1 SO1.2	(-7	Unit-1.0 Integral Calculus	1.1(a), 1.2(a)
PSO		SO1.3 SO1.4		1.1, 1.2	
PO-1, 2,3,8,9,10	CO-2 Use the concept of integration to find area of given curves.	SO2.1 SO2.2		Unit-2.0 Applications of Integral Calculus	2.1(a), 2.1(b). 2.2(a)
PSO		SO2.3 SO2.4		2.1,2.2	
PO-1, 2,3,8,9,10 PSO	CO-3 Model the given engineering problems using the concept of differential equation.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3.0 Differential equations of first order and first degree 3.1,3.2,3.3	3.1(a), 3.2(a), 3.3(a)
PO-1, 2,3,8,9,10 PSO	CO-4 Utilize the concepts of numerical methods to solve given equations.	SO3.5 SO4.1 SO4.2 SO4.3		Unit-4.0 Numerical Solutions of Equations 4.1, 4.2, 4.3	4.1(a), 4.2(a), 4.3(a)
PO-1, 2,3,8,9,10 PSO	CO-5 Measure the area using the concept of numerical integration for civil engineering	SO5.1 SO5.2 SO5.3		Unit-5.0 Numerical Integration 5.1,5.2,5.3	5.1(a), 5.2(a), 5.3(a)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	: 2000253(011)
B)	Course Title	: Applied Chemistry
C)	Pre- requisite Course Code and Title	:
D)	Rationale	:

Diploma engineers have to deal with various materials. The study of concepts of chemistry and application parts from applied chemistry like atomic structures, chemical bonding, water treatment and analysis, electrochemistry and batteries, metals, alloys, insulators, fuels and combustion will help in understanding the technology courses where emphasis is laid on the applications of these concepts and principles in different technology applications. This course is designed by which fundamental information will help the technologists to apply the basic concepts and principles of chemistry to solve broad-based problems.

E) Course Outcomes:

- CO-1 Solve various engineering problems applying the basic knowledge of atomic structure and chemical bonding.
- CO-2 Use relevant water treatment method to solve industrial problems.
- CO-3 Solve the engineering problems using concept of Electrochemistry.
- CO-4 Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys.
- CO-5 Use relevant fuel and lubricants for industrial applications.

F) Scheme of Studies:

S.No				Scheme of Studies (Hours/Week)					
	Study	Code	Title	L	Р	т	Credit L+(P+T)/2		
1	Applied Science	2000253(011)	Applied Chemistry	3	-	1	4		
2	Applied Science	2000261(011)	Applied Chemistry (Lab)	-	3	-	2		

Legend: L-Lecture, P-Practical, T-Tutorial

G) Scheme of Assessment:

S.No	Board of Study	Course Code	Course Title	30		Scheme of Examination					
	Study	UUUC	The			Practical		Total			
				ESE	СТ	TA	ESE	ТА	Marks		
1	Applied Science	2000253(011)	Applied Chemistry	100	20	30	-	-	150		
2	Applied Science	2000261(011)	Applied Chemistry (Lab)	-	-	-	50	20	70		

Legend: ESE: End Semester Exam, CT: Class Test, TA: Teacher Assessment **Note:** Separate passing is must for End Semester Assessment.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course. Convert unit of the given physical quantity from one unit system to other.

CO-1 Solve various engineering problems applying the basic knowledge of atomic structure and chemical

Session Outcomes (SOs)	Laboratory	Class room Instruction	Self Learning
	Instruction (LI)	(CI)	(SL)
 SO1.1 Determine the electronic structure of the given atom for the material used in industry. SO1.2 Calculate the quantum numbers for various energy levels of industrially applicable metals. SO1.3 Use theory of chemical bonding for identification of different properties material used in the industries. 		 Unit-1.0 Atomic Structure and Chemical Bonding 1.1 Atomic Structure 1.1 Electronic structure of atoms, 2 Discovery of electrons, protons and neutrons. 1.1.2 Discovery of electrons, protons and neutrons. 1.1.3 Rutherford model and Bohr's – Burry scheme of distributions of electrons. 1.1.4 Heisenber's uncertainty principle, 1.1.5 Quantum numbers, sub energy level 1.1.6 Distribution of electrons in sub- shells and concept of Electronic configuration of atoms, 1.1.7 Auffbaus's rule, 1.8 Pauli's exclusion principle. 1.9 Hund's rule of maximum multiplicity. 1.2 Chemical Bonding 2.1 Theory of Chemical Bonding, 2.2 Types of Bonds, Ionic or electrovalent bonds, Covalent bond, coordination bond, Hydrogen bonding. 	Discovery of electrons, protons and neutrons.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write electronic structure of the given atoms.

b. Mini Project:

- i. Prepare Rutherford model and Bohr's Burry models.
- ii. Create element cards with different elements showing covalent and ionic bonds.

c. Other Activities (Specify):

i. Seminar on Quantum numbers.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction	Self Learning
(SOs)		(CI)	(SL)
SO2.1 Perform water softening for the industrial hard water. SO2.2 Use the relevant water treatment method for municipal water. SO2.3 Differentiate Natural and Synthetic Rubbers.	LE2.1 Determine total hardness, temporary hardness and permanent hardness of water sample by EDTA method. LE2.2 Determine the alkalinity of given water sample. LE2.3 Determine the turbidity in given water sample by Nephelometric method. LE2.4 Determine the total dissolved and suspended solids in given water sample. LE2.5 Determine the biological oxygen demand in the given water sample.	Unit-2.0 (A) Water Treatment 2.1 Hardness 2.1.1 Types of Hardness 2.1.2 Determination of hardness using EDTA method 2.2 Hard water 2.3 Boiler Problems 2.3.1 Boiler corrosion 2.3.2 caustic embrittlement	 Hardness Types of Hardness

CO-2 Use relevant water treatment method to solve industrial problems.

SW-2 Suggested Sessional Work (SW) :

a. Assignments:

i. Prepare model to find the soap foaming capacity of bore water on addition of soda ash.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

b. Mini Project:

- i. Collect water samples from different water sources and find the characteristics like acidity, conductivity, dissolved solids, suspended particles.
- ii. Collect 3 to 5 water samples to find the dosage of bleaching powder required for its sterilization.

c. Other Activities (Specify):

- i. Seminar on impurities in municipal water Conduct a seminar on " ".
- ii. Visit the municipal water treatment plant.
- iii. Visit the DM water plant.

CO-3 Solve the engineering problems using concept of Electrochemistry.

	(CI)	(01)
		(SL)
Conductance.by conductometric titration.SO3.2 Explain Electrical conductance in metals and Electrolytesby conductometric titration.SO3.3 Describe the different types of Electrodes & Batteries.LE3.2 Determine the variation of conductance with temperature for the given Electrolytes.3.2SO3.4 Define Electrical Insulator and its classificationLE3.3 Determine the conductivity of given water sample.3.4LE3.5 Determine the voltage generated from chemical reaction using Daniel Cell.3.4	 it-3.0 (A) Electrochemistry and thereis Conductance: 3.1.1 Nature of solute, 3.1.2 Nature of solvent, 3.1.3 Temperature, 3.1.4 Concentration or dilution. Electrical conductance in metals and electrolytes, 3.2.1 specific conductance, 3.2.2 equivalent conductance, 3.2.3 cell constant. 3.3 Electrodes: 3.3.1 Hydrogen electrode, 3.3.2 calomel electrode 3.3.3 glass electrode Conductometric Titration Batteries 3.5.1 Type of batters with examples 3.5.2 Primary battery 3.5.3 Secondary battery it-3.0 (B) Electrical Insulator d thermocouple alloy 1 Electrical insulators: 3.1.1 Classification and example 	 (SL) Conductance: Nature of solute, Nature of solvent, Temperature, Concentration or dilution.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

SW-3 Suggested Sessional Work (SW) :

a. Assignments:

- i. Prepare the chart displaying working process of lithium ion and Ni & Cd batteries.
- ii. Prepare the model, expressing the working process of fuel cell.

iii. Prepare chart showing properties of Thermocouple alloy.

b. Mini Project:

- i. Collect the samples of different types of electrodes used in various batteries and prepare a report on their conductance.
- ii. Prepare the working model of Daniel cell and calculate the current flow by Daniel cell.
- iii. Collect the sample of alloying elements like Pt, Ni, W, Fe and prepare a report of their effects on the properties of thermocouple Alloy.

c. Other Activities (Specify):

- i. Organize quiz on Electric Conductivity.
- ii. Organize quiz on metal insulators.

CO-4 Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys.

Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self Learning
(SOs)	(LI)		(SL)
SO4.1 Extract the ore from chemical reaction for industrial application SO4.2 Prepare the metal alloy for industrial application. SO4.3 Use the Refractory material for industrial applications.	LE4.1 Determine the percentage of copper in given copper ore. LE4.2 Standardization of KMnO₄ solution using standard oxalic acid and Determine the percentage of iron present in given Hematite ore by KMnO₄ solution.	 Unit- 4.0 (A) Metallurgy 4.1 Metallurgy: 4.1.1 Mineral, 4.1.2 Ore, 4.1.3 Gangue, 4.1.4 Flux, 4.1.5 Slag. 4.2 Metallurgical process of iron and copper Unit- 4.0 (B) Metal Alloys 4.1 Properties of metals like copper, aluminum, tungsten, platinum nickel. 4.2 Ferrous alloys: 4.2.1 Low carbon 4.2.2 Medium carbon 4.2.3 High carbon steels. 4.3 Non-ferrous alloy: 4.3.1 Brass, 4.3.2 Bronze, 4.3.3 Duralumin, 4.3.4 Tinman Solder 4.3.5 Woods metal Unit-4.0 (C) Cement: 4.1 Portland cement, 4.1.1 Constituent 4.1.2 Setting and Hardening. 	 Properties of metals like copper, aluminum, tungsten, platinum nickel.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI : Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

SW-4 Suggested Sessional Work (SW) :

a. Assignments:

- i. Prepare chart showing properties of refractory materials.
- ii. Prepare chart showing different industrial application of metal and relate it with required property or properties using internet.
- iii. Prepare chart of showing percentage composition, properties and industrial applications of different types of steel based on above alloying elements using internet.

b. Mini Project:

- i. Collect different samples of cement and find their initial and final setting time.
- ii. Find the effect of alloying elements like Mn, Cr, Ni, W, V, Co on properties of steel.

c. Other Activities (Specify):

- i. Organize quiz on metal properties, Alloy and ores.
- ii. Visit Metal industries to learn metallurgy process.

CO- 5	Use relevant fuel and lubricants for industrial applications.
-------	---

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning
(SOs)			(SL)
SO5.1 Select the	LE4.1 Determine the	Unit-5.0 (A) Fuel and	Classification of
relevant fuel for	moisture content, ash	Combustion	fuel.
industrial	and volatile matter in	5.1 Fuel: Calorific value and	Solid fuel
applications.	given coal sample	ignition temperature,	classification.
SO5.2 Test the quality	using proximate	classification.	Octane number
of coal for	analysis.	5.2 Solid fuels: Coal,	and Cetane
industrial uses.	LE4.2 Determine the	Classification and	number.
SO5.3 Perform	calorific value of the	composition,	
fractional	given solid fuel using	5.2.1 Proximate	
distillation	Bomb calorimeter.	analysis,	
process for	LE4.3 Determine the effect	5.2.2 Ultimate analysis,	
refining of	of temperature on	5.2.3 Bomb	
petroleum in	viscosity for given	calorimeter.	
industries.	lubricating oil using	5.2 4 Carbonization of coke	
SO5.4 Test the	Redwood viscometer	by Otto Hofmann's	
properties of the		oven.	
given lubricant	LE4.4 Determine the flash	5.3 Liquid fuels:	
for industrial	and fire point of given	5.3.1 Fractional	
applications.	lubricating oil using	distillation of	
SO5.5 Identify the	Cleavland open cup	crude petroleum,	
different	apparatus.	5.3.2 Boiling range,	
ingredients of	LE4.5 Determine the	5.3.3 Composition and	
paints and	cloud and pore point	properties.	
varnish for	of the given lubricant.	5.3.4 Knocking,	
engineering	LE4.6 Separate the various	5.3.5 Cracking,	

Semester - II

	incal/EEE/IVIIIIing & IVIIIe 3	Semester - II	
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
applications.	fractions of the given	5.3.6 Octane number	
approationer	sample of petroleum	and Cetane	
	using fractional	number.	
	distillation.	5.4 Gaseous fuels:	
		5.4.1 Biogas, LPG, and	
		CNĞ.	
		5.4.2 Combustion	
		equation of	
		gaseous fuels,	
		Unit 5.0 (B) Lubricants,	
		Paints and Varnishes	
		5.1 Lubricant-	
		5.1.1 Types,	
		a. Liquid	
		b. Solid	
		c. Semisolid	
		5.1.2 Theory of	
		lubrication,	
		5.1.3 Properties of a	
		good lubricants	
		5.1.4 Flash and Fire	
		point,	
		5.1.5 Pour paint and	
		cloud point.	
		5.1.6 Specification	
		number and	
		viscosity,	
		5.2 Paints and Varnish	
		5.2.1 Constituents,	
		5.2.2 Properties and	
		uses.	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

SW-5 Suggested Sessional Work (SW) :

a. Assignments:

- i. Prepare chart showing different types of liquid fuels their calorific values and uses.
- ii. Prepare a chart differentiating proximate and ultimate analysis of Coal.
- iii. Prepare the comparative chart of commercially available lubricants on the basis of mechanism of lubrication.
- iv. Prepare the chart displaying applications of different paints and Varnish.

b. Mini Project:

- i. Prepare a report on effect of LPG and CNG on environment
- ii. Collect the sample of various lubricants and prepare the report about properties and uses.

c. Other Activities (Specify):

- i. Seminar on combustion of gaseous fuel.
- ii. Visit the paint industry.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Init Unit Titles		Marks Distribution			
Number		R	U	Α	Marks	
I	Atomic Structure and Chemical Bonding	8	7	5	20	
	Water Treatment and Polymer	5	5	10	20	
	Electrochemistry, Batteries, Insulator and	s, Insulator and 8 6			20	
	Electrical Thermocouple					
IV	Metallurgy, Metal Alloys and Cements	5	7	8	20	
V	Fuel and Combustion, Lubricants, Paints Varnish	8	5	7	20	
	Total	34	30	36	100	

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Specification Table (For ESE of Laboratory Instruction*):

Laboratory Instruction	Short Laboratory Experiment Titles	Assessmer		
Number	Short Laboratory Experiment rules	Perfori	mance	Viva-
Number		PRA	PDA	Voce
LE2.1	Complexometric Titration	15	10	5
LE2.2	Alkalinity	15	10	5
LE2.3	Turbidity	15	10	5
LE2.4	TDS & SS	20	05	5
LE2.5	BOD	12	13	5
LE3.1	Conductometric titration	15	10	5
LE3.2	Conductometer	17	08	5
LE3.3	Conductometer	18	07	5
LE3.4	pH meter	16	09	5
LE3.5	Daniel cell	15	10	5
LE4.1	Percentage of Cu	16	09	5
LE4.2	Percentage of Fe	16	09	5
LE5.1	Proximate analysis	15	10	5
LE5.2	Bomb calorimeter	15	10	5
LE5.3	Redwood viscometer-I	16	09	5
LE5.4	Cleaveland open cup	16	09	5
LE5.5	Cloud and pore point	16	09	5
LE5.6	Fractional distillation	15	10	5

* Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals ,

Legend: PRA: Process Assessment, PDA: Product Assessment

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Industrial visits
- 6. Industrial Training

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

- 7. Field Trips
- 8. Portfolio Based Learning
- 9. Role Play
- 10. Demonstration
- 11. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)
- 12. Brainstorming
- 13. Others

L) Suggested Learning Resources:

(a) Books :

No.	Titles	Author	Publisher	Edition & Year
1	Engineering Chemistry	Agarwal, Shikha	Cambridge university press ; New Delhi,	2015
2	Engineering Chemistry	Dara, S. S. and Dr.S.S.Umare	S.Chand. Publication, New Delhi,	2015
3	Engineering Chemistry	Jain & Jain	Dhanpat Rai and sons; New Delhi	2015
4	Engineering Chemistry	Dr.Vairam, S.	Wiley India Pvt.Ltd., New Delhi\	2013
5	Chemistry for engineers	Agnihotri, Rajesh	Wiley India Pvt.Ltd.	2014

(b) Open source software and website address :

- 1. www.chemguide.co.uk/atommenu.html (Atomic structure and chemical bonding)
- 2. <u>www.visionlearning.com</u> (Atomic structure and chemical bonding)
- 3. <u>www.chem1.com</u> (Atomic structure and chemical bonding)
- 4. https://www.wastewaterelearning.com/elearning/ (Water Treatment)
- 5. <u>www.chem1.com/acad/webtext/elchem/ec6.html (Electrochemistry</u> and batteries)
- 6. www.em-ea.org/guide%20books/book 2/2.1%20fuels%20and%20combustion.pdf (Fuel and Combustion)
- 7. www.chemcollective.org (Metals, Alloys)
- 8. <u>www.wqa.org</u>(Water Treatment)

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Manufacturers' Manual
- 4. Users' Guide

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipments	Broad Specifications	Relevant Experiment Number
1	Electronic balance,	scale range of 0.001g to 500g. pan size 100 mm; response time 3-5 sec.; power requirement 90- 250 V, 10 watt.	All
2	Nephelometer	Auto-ranging from 20-200 NTU,+/- 2% of reading plus 0.1 NTU, power 220 Volts +/- 10% AC 50 Hz.	LE 2.3
3	Conductometer	Range 0-199.9ms; resolution 0.1ms/0.01ms/0.001ms/0.1µs/0.01µs; accuracy ±0.5% ±2 digits	LE3.2
4	pH meter	Working range 0-14; resolution 0.1/0.01 pH; temperature compensation 0-100 ⁰ C	LE3.4
5	Electric oven	inner size 18"x18"x18"; temperature range 100 to 250° C. with the capacity of 40lt.	LE 5.1
6	Muffle furnace,	Muffle furnace, Temperature up to 900 ⁰ C, digital temperature controller with an accuracy of +/- 3 ⁰ C	
7	Bomb calorimeter	Measurement unit J/kg, cal/gm, BTU/lb; temp. resolution 0.0001°C or better; combustion bomb- halogen and acid resistant stabilized stainless steel; resolution 0.001kcal/gm; measurement range up to 40,000 J/gm	LE 5.2
8	Redwood viscometer-1	Suitable to operate at 220 volts AC mains with tap ; stainless steel jet; cup cover; thermometer ;electronic digital indicator ; controller etc	LE5.3
9	Cleavland open cup apparatus	Energy regulator-to regulate the rate of rise in temperature; 220V; 50 Hz; single phase; AC supply	LE5.4
10	Cloud and pore point apparatus	Energy regulator ,to regulate the rate of rise in temperature,200V,50Hz, single phase,AC supply etc.	LE 5.5
11	Fractional distillation assembly	Capacity 1.5 It.	LE 5.6

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

N) Mapping of POs & PSOs with COs:

	Course Outcomes (COs)	Programme Outcomes (POs)						Spe Outc	amme cific omes Os)				
		PO-1 Basic knowledge		PO-3 Experiments and practice	PO-4 Engineering Tools	engineer	PO-6 Environment and sustainability	PO-7 Ethics	PO-8 Individual and team work	PO-9 Communic ation	PO-10 Life-long learning	PSO-1	PSO-2
CO-1	Solve various engineering problems applying the basic knowledge of atomic structure and chemical bonding.	3	1	1	-	-	-	1	2	2	1	-	1
CO-2	Use relevant water treatment method to solve industrial problems.	3	1	3	3	2	2	1	3	1	2	1	1
CO-3	Solve the engineering problems using concept of Electrochemistry	3	1	2	2	1	2	-	3	2	2	-	1
CO-4	Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys	3	1	3	3	-	2	-	3	1	2	1	1
CO-5	Use relevant fuel and lubricants for industrial applications.	3	1	3	2	1	1	-	2	1	2	1	1

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

O) Course Curriculum Map:

POs & PSOs No.	COs No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO-1,2,3,7,8,9,10 PSO-2	CO-1 Solve various engineering problems applying the basic knowledge of atomic structure and chemical bonding.	SO1.1 SO1.2 SO1.3		Unit-1.0 Units , Atomic Structure and Chemical Bonding 1.1 , 1.2	
PO-1,2,3,4,5,6, 7,8,9,10 PSO-1,2	CO-2 Use relevant water treatment method to solve industrial problems.	SO2.1 SO2.2 SO2.3	LE2.1 LE2.2 LE2.3 LE2.4 LE2.5	Unit-2.0 (A) Water Treatment 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 Unit-2.0 (B) Polymer 2.1, 2.2, 2.3, 2.4	
PO-1,2,3,4,5,6, 8,9,10 PSO-2	CO-3 Solve the engineering problems using concept of Electrochemistry	SO3.1 SO3.2 SO3.3 SO3.4	LE3.1 LE3.2 LE3.3 LE3.4 LE3.5	Unit-3.0 (A) Electrochemistry and batteries 3.1, 3.2, 3.3 Unit-3.0 (B) Electrical Insulator and thermocouple alloys 3.1, 3.2	As mentioned in page relevant pages
PO-1,2,3,4,6, 8,9,10 PSO-1,2	CO-4 Solve the engineering problems by applying the knowledge of metallurgical process and Metals Alloys.	SO4.1 SO4.2 SO4.3	LE4.1 LE4.2	Unit-4.0 (A) Metallurgy 4.1, 4.2 Unit-4.0 (B) Metal alloys 4.1, 4.2, 4.3 Unit-4.0 (C) Cement 4.1	
PO-1,2,3,4,5, 6,8,9,10 PSO-1,2	CO-5 Use relevant fuel and lubricants for industrial applications.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	LE5.1 LE5.2 LE5.3 LE5.4 LE5.5	Unit-5.0 (A) Fuel and Combustion 5.1, 5.2, 5.3, 5.4 Unit-5.0 (B) Lubricants paints and varnishes 5.1, 5.2	
		303.0	LE5.6	0.1,0.2	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	: 2000254(015)
B)	Course Title	: Applied Physics
C)	Pre- requisite Course Code and Title	:
D)	Rationale	:

Engineering diploma holders have to deal with physical properties of various materials, measurements of physical quantities, basic tools, and maintenance of machines in the industrial environment. Diploma holder must have a skill to apply the knowledge of basic concepts and principles of measurements, mechanics, waves, properties of materials, motion, friction, fluid mechanics, optics, optical instruments, electricity, magnetism and modern physics in solving broad based engineering problems. This course of engineering physics helps diploma engineers to achieve the course outcomes and provide sound background for self-development in future to cope up with new innovations.

E) Course Outcomes:

- CO-1 Estimate errors in measurement of physical quantities.
- CO-2 Solve mechanics related engineering problems by applying the knowledge of forces and properties of materials.
- CO-3 Solve engineering problems using relevant optical equipment by applying the principles of ray optics.
- CO-4 Apply concepts of electrostatics, magnetism and electricity to solve engineering problems.
- CO-5 Solve engineering problems by applying the knowledge of modern physics.

F) Scheme of Studies:

S.No	Board of	Course Code	Course Title	Scheme of Studies (Hours/Week)		urs/Week)	
	Study	Code	Inte	L	Р	Т	Credit L+(P+T)/2
1	Applied Science	2000254(015)	Applied Physics	3	-	1	4
2	Applied Science	2000262(015)	Applied Physics (Lab)	-	3	-	2

Legend: L-Lecture, P-Practical, T-Tutorial

G) Scheme of Assessment:

S.No	Board ofCourseCourseNoStudyCodeTitle		Scheme of Examination						
0.110	Study	oouc	THE			Total			
				ESE	СТ	TA	ESE	TA	Marks
1	Applied Science	2000254(015)	Applied Physics	100	20	30	-	-	150
2	Applied Science	2000262(015)	Applied Physics (Lab)	-	-	-	50	20	70

Legend: ESE: End Semester Exam, CT: Class Test, TA: Teacher Assessment

Note: Separate passing is must for End Semester Assessment.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (CI), Laboratory Instruction (LI), Tensional Work (SW) and Self-Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Estimate errors in measurement of physical quantities.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO1.1 Convert unit of the given physical quantity from one-unit system to other. SO1.2 Derive the formula of derived physical quantity using dimensional analysis. SO1.3 Calculate the error in the given measurement with justification. 	LE1.1 Use Vernier Calipers to measure the dimensions of given object in significant figures and estimate errors precisely. LE1.2 Use Screw gauge to measure the dimensions of given object in significant figures and estimate errors precisely. LE1.3 Use Spherometer to measure the dimensions of given objects in significant figures and estimate error precisely.	 Unit-1.0 Units, Measurement and Error analysis 1.1 Unit of physical quantity 1.11 Fundamental and derived unit 1.2 Unit system 2.1 CGS, MKS and SI Advantages/disadvant ages of SI unit system Seven basic and Supplementaryunits. 1.3 Dimensional Analysis 3.1 Dimensional formula and equations. 2 Applications of Dimensional equations. 1.33 Numerical problems on Dimensional analysis. 1.4 Measurement 41 Accuracy, Precision and Errors. 2 Absolute, Relative and percentage Error. 	1.21(a) Advantages/ disadvantages of SI unit system 1.21 (b) Seven basic and Supplementary units

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Measure dimensions of class room, house hold items, thickness of paper, aluminum foil, iron bar and items found in surroundings.
- ii. Analyze the correctness of given physical relation using dimensional analysis.
- iii. Identify the instruments used for measurement of seven fundamental quantities.
- iv. Identify instruments used for measurement of derived quantities.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

b. Mini Project:

- i. Prepare working model of measuring instruments Vernier Calipers, screw gauge.
- ii. Collect low dimension items from household and market and calculate the thickness with the help of Vernier Calipersand screw gauge.

c. Other Activities (Specify):

- i. Seminar on Errors in measurements.
- ii. Seminar on precision and accuracy of any instrument.

CO-2 Solve mechanics related engineering problems by applying the knowledge of forces and properties of materials.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO2.1 Classify conservative and non- conservative forces ina givensituation. SO2.2 Explain Gravitational forces and related constants at given place. SO2.3 Differentiate between types of Modulii of elasticities for given solids. SO2.4 Select a given fluid on the basis of surface tension and viscosity.	method.	 Unit-2.0 Force and General Properties of matter 2.1 Force 2.11 Types of Forces (a) Conservative and non-conservative forces (b) Frictional Forces, Limiting static and dynamic friction. (c) Centripetal and centrifugal force and their illustration. (d) Gravitational Force' G' and 'g' and their interrelation, Factors affecting 'g' 2.21 Hooke's law (a) Elastic limit and elastic fatigue 2.22 Modulii of elasticities (a) Young' s modulus, Bulk Modulus, Shear modulus of rigidity 2.31 Molecular force, surface energy, effect of temperature 2.32 Cohesive and adhesive force 	 2.11. Types of Forces. (d) Factors affecting 'g' 2.21 (a) Elastic limit and elastic fatigue 2.32 Cohesive and adhesive force 2.42 Streamline and turbulent flow
constants at given place. SO2.3 Differentiate between types of Modulii of elasticities for given solids. SO2.4 Select a given fluid on the basis of surface tension and	Capillary rise method.	 dynamic friction. (c) Centripetal and centrifugal force and their illustration. (d) Gravitational Force' G' and 'g' and their interrelation, Factors affecting 'g' 2.2 Elasticity 2.21 Hooke's law (a) Elastic limit and elastic fatigue 2.22 Modulii of elasticities (a) Young' s modulus, Bulk Modulus, Shear modulus of rigidity 2.31 Molecular force, surface energy, effect of temperature 2.32 Cohesive and adhesive 	force 2.42 Streamlir and turbu

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
		illustration, rise of liquid in capillary tube	
		2.4 Viscosity	
		2.41 Coefficient of viscosity, Newton's law of viscosity	
		2.42 Streamline and turbulent flow, Reynolds number	
		2.43 Poiseuille's equation (no derivation of formula), Stoke's law and their applications	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Find the value of 'g' at different locations of India and justify the reasons for variations.
- ii. Enumerate the examples of conservation of angular momentum in day to day life.
- iii. Enumerate the applications of surface tension in daily life.
- iv. Explore the use of different liquid on the basis of their viscosity.

b. Mini Project:

- i. Prepare a setup to show frictionless motion on slanting surface.
- ii. Prepare a model to compare elasticity of different materials.

c. Other Activities (Specify):

- i. Seminar on artificial and natural satellite.
- ii. Seminar on weightlessness in lifts and space.

CO-3 Solve engineering problems using relevant optical equipment by applying the principles of ray optics.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO3.1 Compare the wavelength and	LE3.1 Calculate refractive index of material of glass slab.	Unit-3.0 Optics, optical instruments and optical fibers	3 b. Absolute and relative refractive index
different components of electromagne	different components of	a. Refraction 3.11 Laws of refraction 3.12 Lenses and combination of lenses	3.32 Applications of TIR
tic spectrum and locate visible range.	accurately. LE3.4 Determine the Critical	 b. Absolute and relative refractive index 3.13 Refraction 	

Session Outcomes	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
(SOs) SO3.2 Explain the phenomena of total internal	angle for total Internal reflectionof given medium w. r. t. air. LE3.5 Determine Numerical	through prism, Angle of minimum deviation and its relation	
reflection in optical fiber. SO3.3 Select materials on	aperture of Optical fiber	 c. Total internal reflection of light 3.31 Critical angle. 2.32 Appliestions of TID 	
the basis of refractive index.		3.32 Applications of TIR 3.33 Optical fiber, NA of Optical fiber	
		3. 4 Optical instruments 3.41 Simple and compound microscope 3.42 Spectrometer	
		3.5 Electromagnetic spectrum 3.31 Pure and Impure spectrum, Visible range	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i Write details of method of finding refractive index of liquid using hollow prism
- ii Prepare detail report on the frequency range of electromagnetic waves interaction in daily life.

b. Mini Project:

- i Prepare working model to demonstrate the TIR in Optical fiber.
- ii Prepare model of microscope with house hold materials and lens.

c. Other Activities (Specify):

- i. Visit to BSNL like organizations to observe the role of optical fibers in communication.
- ii. Seminar on industrial application of Optical fiber

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-4 Solve electrical engineering problems by apply	ng concepts of electrostatics, magnetism and electric
current.	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)		
SO4.1 Explain Coulomb's law, electric potential and electric field	LE4.1 LE4.1 Use Ohm's law to calculate unknown resistance in a given circuit.	Unit-4.0. Electrostatics,Magnetism and Current Electricity 4.1 Electric Charge, Coulomb's Law	4.2 Equi- potential Surfaces		
for given charge distribution. SO4.2 Determine capacity of a capacitor with	LE4.2 Determine the resistance of given circuits by applying series and parallel combination of resistance.	 4.2 Electric Field,Potential, Potential Difference between Two Points,Equi- potential Surfaces 4.3 Types of dielectrics and dielectric Strength 	 4.41 Factors affecting Capacity, types of capacitors 4.61 Specific resistan 		
given dielectric materials. SO4.3 Use Ohm's law for different combinations of resistance to	LE4.3 Determine the specific resistance of the given materialby using meter bridge.	 4.4 Capacity, Units, Principle of Capacitor 4.41 Factors Affecting Capacity, type of capacitors 4.5 Magnetism: - 	ce 4.62 Wheats tone Bridge principl e		
calculate current and potential difference.	LE4.4 Use deflection magnetometer for comparison of magnetic moments of two bar magnets.	 4.51 Magnetic lines of force, lines of induction, 4.6 Current Electricity 4.61 Resistance, Specific resistance 	applicat ions		
	LE4.5 Draw the magnetic lines of forces using bar magnet and compass needle.	4.62 Series and parallel combination of resistance4.63 Internal resistance of a cell			
	LE4.6 To compare e.m.f of two cells using potentiometer.	4.64 Potential difference and e.m.f of a cell4.65 Combination of cells in series and in parallel.			
	LE4.7 To determine internal resistance of a cell.	4.66 Simple applications of Wheatstone bridge, metre bridge and Potentiometer.4.67 Electrical power			

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Prepare list of dielectric materials with dielectric constant.
- ii. Analyze the role of resistance and capacitors in house hold electrical items viz. electric fans etc.
- iii. Prepare list of instruments/ equipment's using Magnets in house hold appliances and Labs.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

b. Mini Project:

- i. Prepare working models of capacitors.
- ii. Collect some resistance and capacitors from nearby electrical shops and measure its value using multi-meter.
- iii. Prepare circuits with LED to illustrate the series and parallel combination of resistance.
- iv. Prepare cells using different electrolytes.

c. Other Activities (Specify):

- i. Seminar on applications of resistance and capacitors.
- ii. Market survey for availability of electronic items in the local market.
- iii. Calculate domestic monthly electricity bill.

CO-5 Solve engineering problems by applying the knowledge of modern physics.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Apply the knowledge of photoelectric effect and X- rays in a given situation. SO5.2 Compare laser withother sources of light. SO5.3 Explain the working principle and applications of Optical fiber	LE5.1 Calculate the work function of given photoelectric materials accurately. LE5.2 Calculate the divergence of given laser.	 UNIT 5. Modern Physics 5.1 Photoelectric effect 5.11 Laws of photoelectric emission, Photoelectric equation and threshold frequency 5.12 Photo cell 5.2 X-rays 5.21 Production of X rays, properties & uses. 5.3 Laser 5.31 Spontaneous and stimulated emission 5.32 population inversion, pumping scheme and active system Ruby Laser and semiconductor laser 5.4 Ultra-sonics 5.41 Frequency range 5.42 Methods of production-Magnetostriction & Piezo electric method 5.43 Properties of ultrasonics 5.44 Applications of ultrasonics. 	 5.12 Photo cell 5.21 Properties & uses of X rays. 5.43 Applicatio ns of Optical Fiber

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self-Learning

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- v. To study different medical applications of ultra-sonics and X-rays.
- vi. Prepare list of type of laser used in office and house hold devices.

b. Mini Project:

- i. To design a working model for the production of ultra-sonics.
- ii. Determine the divergence of key chain laser purchased from local market.

c. Other Activities (Specify):

- i. Seminar on industrial applications of ultra-sonics.
- ii. Seminar on X ray.
- iii. Seminar on engineering applications of laser

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit		Marks Distribution			
Numbe	Title	R	U	Α	Marks	
r						
	Units, Measurement and Error analysis	8	5	7	20	
	Forces and General Properties of matter	5	5	10	20	
III	Optics, optical instruments and optical	8	6	6	20	
	fibers					
IV	Electrostatics, Magnetism and Current	5	8	7	20	
	Electricity					
V	Modern Physics	6	7	7	20	
	Total	32	31	37	100	

Legend: R: Remember, U: Understand, A: Apply and above

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

J)	Suggested Specification Table (For ESE of Laboratory Instruction*):
----	---

Laboratory	Short Laboratory	Assessm			
Instruction	Experiment Title	Perf	ormance	Viva-	
Number		PRA	PDA	Voce	
LE1.1	Vernier Calipers	15	25	10	
LE1.2	Screw gauge	15	25	10	
LE 1.3	Spherometer	15	25	10	
LE2.1	Young modulus	25	15	10	
LE2.2	'g' by Simple pendulum	25	15	10	
LE2.3	Viscosity of liquid	25	15	10	
LE2.4	Surface tension by capillary rise method	25	15	10	50 Marks are allocated for
LE3.1	Refractive index of glass slab	20	20	10	performance under ESE.
LE3.2	Combination of lens	25	15	10	
LE3.3	Refractive index of Prism	20	20	10	
LE4.1	Ohm's Law	15	25	10	
LE4.2	Series and parallel combination of resistance	25	15	10	
LE4.3	Specific Resistance	25	15	10	
LE 4.4	Deflection galvanometer	25	15	10	
LE4.5	Magnetic lines of Forces	20	20	10	
LE4.6	Comparison of e.m.f of cells	20	20	10	
LE4.7	Internal resistance of a cell	20	20	10	
LE5.1	Photo electric effect	20	20	10	
LE5.2	Diode laser	15	25	10	

* Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practicals

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to performed at the end semester examination of 50 Marks as per assessment scheme

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Industrial visits
- 6. Industrial Training
- 7. Field Trips
- 8. Portfolio Based Learning
- 9. Role Play
- 10. Demonstration
- 11. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)
- 12. Brainstorming
- 13. Others

L) Suggested Learning Resources:

(b) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Fundamentals of	Halliday, David;	John Wiley and	Tenth edition 2013
	Physics	Resnik, Robert and	sons	
		Walker, Jearl		
2	The Feynman Lectures	Feynman P.Richar, B.	Pearson	First edition 2012
	on Physics	LeightonRobert	Education India	
		Sands Matthew		
3	University physics	Young Hugh,Freedman	Pearson	Thirteenth Edition
		Roger	Education India	2013

(b) Open source software and website address:

- 1. Some relevant Experiments: http://cdac.olabs.edu.in
- 2. VernierCalipers:http://www.tutorvista.com/physics/animations/vernier-callipers-animation
- 3. Screw gauge: www.notesandsketches.co.uk/Measuring_Tools_Small.swf
- 4. http://www.stefanelli.eng.br/en/virtual-vernier-caliper-simulator-05-millimeter
- 5. Some relevant Experiments and theory topics:

https://phet.colorado.edu/en/simulations/category/physics

- 6. Photoelectric effect: http://vlab.amrita.edu/?sub=1&brch=195&sim=840&cnt=1
- 7. Deflection magneto meter: http://emv-au.vlabs.ac.in/Deflection_Magnetometer/
- 8. Laser: https://spaceplace.nasa.gov/laser/en/

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

(c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Manufacturers' Manual
- 4. Users' Guide

M) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad	Relevant
		Specifications	Experiment
			Number
1	Vernier calipers	Stain less steel body, Range: 0-150mm	LE1.1
		,Resolution: 0.1mm	
2	Screw gauge	Stainless steel spindle and ratchet top brass body	LE 1.2
		with satin chrome finish.	
		Graduated to read up to 25mm in 0.01mm	
		divisions with screw pitch of 0.5mm, ratchet lock	
		nut	
3	Spherometer	Brass double disc superior quality, stainless steel	LE1.3
		legs and screw 1/100mmpitch each.	
4	Pendulum apparatus for	200 mm diameter metal wheel mounted with fixed	LE2.2
	determination of 'g'	stand and a meter scale, stop watch to measure	
		time. steel case fly back action least count	
		1/10 th or 1/5 th of second	
5	Stoke's Law apparatus	Glass tube (~1-inch diameter and length ~ 1 m)	LE2.3
		with stand, timer, steel sphere, glass beads	
6	Surface tension set up	Travelling microscope with horizontal and vertical	LE2.4
		movement (LC 0.001 cm), capillarytube, beaker,	
		pin fixed on adjustable stand	
7	Glass slab	Rectangular, all sides polished, made from slightly	LE3.1
		greenish glass free from bubbles,75*50*18 mm	
8	Glass Prism	Equilateral or right angled, from bubble free boro	LE 3.2
		crown glass 38 x 38	
9	Ohm's law apparatus	Box type with D.C meter to verify ohm's law with	LE4.1
		fitted ammeter & voltmeter	
10	Post Office Box	Complete set in polished wooden box, Split brass	LE4.2
		contact blocks holding precision cut,	
		interchangeable plug having molded black fluted	
		tops. Coils of constantan wire with 4 pair of ratio	
		arms.	
12	MeterBridge (Wheatstone	Sun mica top, two gap type having lock type	LE4.3
	Bridge)	terminals with pencil jockey.	
13	Deflection magnetometer	Wooden base length~ 1 m, magnetic compass,	LE4.4
		meter scale and magnets	

14	Bar magnet	Alnico size 3"- 4"	LE 4.5
15	Potentiometer	10K Ohm 500mW Linear Slide Potentiometer.	LE 4.6
		About 10 m wire of Manganin and constantan with high resistivity and low temperature coefficient stretched on a wooden board attached with a meter scale and pencil jockey.	LE 4.7
16	Photoelectric apparatus	Includes photo cell, light sources, voltmeter, ammeter	LE5.1
17	Diode laser	Power 5 mW, randomly polarized	LE5.2

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

N) Mapping of POs & PSOs with COs:

Course Outcomes (COs)		Programme Outcomes (POs)								Spe Outc	amme cific omes Os)	
	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PSO-1	PSO-2
CO-1	3	2	3	-	-	-	1	1	2	1		
CO-2	3	2	2	1	-	1	-	1	1	1		
CO-3	3	2	2	1	1	1	-	1	1	1		
CO-4	3	1	1	1	1	1	1	1	1	1		
CO-5	3	1	1	-	-	-	-	1	-	1		

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

POs No.	COs No.	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO-1,2,3,7,8,9,10 PSO	CO-1	SO1.1 SO1.2 SO1.3	LE1.1 LE1.2 LE1.3	Unit-1.0 Units, Measurement and Error analysis 1.1, 1.2,1.3,1.4,1.5	1.21 (a) 1.21 (b)
PO-1,2,3,4,6,8,9,10 PO-10 PSO	CO-2	SO2.1 SO2.2 SO2.3 SO2.4	LE2.1 LE2.2 LE2.3	Unit-2.0 Forces and General Properties of matter 2.1,2.2,2.3,2.4	2.11 d 2.21 a 2.32 a 2.42
PO- 1,2,3,4,5,6,8,9,10 PSO	CO-3	SO.3.1 SO3.2 SO3.3 SO3.4	LE3.1 LE 3.2	Unit-3.0 Optics, optical instruments and optical fibers 3.1,3.2,3.3,3.4	3.3 d 3.4 d 3.5 b
PO- 1,2,3,4,5,6,7,8,9,10 PSO	CO-4	SO4.1 SO4.2 SO4.3	LE4.1 LE4.2 LE4.3 LE4.4 LE4.5 LE 4.6 LE4.7	Unit-4.0 Electrostatics, Magnetism and Current Electricity 4.1,4.2,4.3,4.4,4.5, 4.6	4.2 4.41 4.61 4.62
PO-1,2,3,8,10 PSO	CO-5	SO5.1 SO5.2 SO5.3	LE5.1 LE5.2	Unit-5.0 Modern Physics 5.1,5.2,5.3,5.4,	5.12 5.21 5.43

O) Course Curriculum Map:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self-Learning

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	: 2000255(037)
B)	Course Title	: Basic Non Conventional Energy Sources
C)	Pre- requisite Course Code and Title	:
ח)	Dationalo	

Rationale D)

In the context of rapidly depleting fossil fuel resources and increasing power demand along with environmental concern it is imperative to look for the alternative sources of energy. Non conventional energy sources are feasible options to cope up the need to develop sustainable energy systems. It is hoped that with the advancement in technology and research efforts in the field of development of nonconventional sources of energy, these sources may prove to be cost-effective as well. The future of Wind, Solar, tidal and other energy sources is bright and these will play an important role in the world energy scenario and future employments. This course aims at developing the ability in the students to cope up with the working, construction and maintenance aspects of machinery, devices and components associated with these systems.

Course Outcomes: E)

- CO-1 Explore the role and prospects of non-conventional energy sources.
- CO-2 Explain construction, working and maintenance of Solar energy devices and components.
- CO-3 Describe construction and working of Wind energy related systems and subsystems.
- CO-4 Explain construction, working and maintenance of Biomass plants.
- CO-5 Describe construction and working of Geothermal, OTEC, Tidal and Micro Hydel energy systems and subsystems.
- CO-6 Explore the utility of fuel cell and hydrogen energy in various areas.

Scheme of Studies: F)

S.No	Board of	Course Code	Course	Schen	ne of Stu	udies (Ho	urs/Week)
	Study	code	Title -	L	Р	т	Credit L+(P+T)/2
1	Mechanical Engineering	2000255(037)	Basic Non Conventional Energy Sources	1	-	1	2
2	Mechanical Engineering	2000263(037)	Basic Non Conventional Energy Sources (Lab)	-	3	-	2

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others) P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), T- Tutorial includes Sessional Work(SW) (assignment, seminar, mini project etc.) and Self Learning(SL), C:Credits

SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to Note: ensure outcome of Learning.

G) Scheme of Assessment:

S.No	Board of	Course	Course	Scheme of Examina Theory Practical To		amination			
	Study	Code	Title			Pract	ical	Total	
				ESE	СТ	TA	ESE	TA	Marks
1	Mechanical	2000255(037)	Basic Non Conventional	-	-	30	-	-	30
	Engineering		Energy Sources						
2	Mechanical	2000263(037)	Basic Non Conventional	-	-	-	50	20	70
	Engineering		Energy Sources (Lab)						

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

- **PROGRESSIVE ASSESSMENT**: (50 MARKS)
 - CLASSROOM ASSESSMENT (CA) : (a) CLASS TEST(CT) Nil
 (b) TEACHER'S ASSESSMENT (TA) 30 (Sessional work (SW) -20, Attendance (ATT) -10)
 - LABORATORY ASSESSMENT (LA): TEACHER'S ASSESSMENT (TA) 20 (PRA 10, PDA -5, VIVA VOICE -5)
- END SEMESTER ASSESSMENT (ESE): (50 MARKS)
 - 1. END SEMESTER EXAM (ESE-THEORY)- NII
 - 2. END SEMESTER EXAM (ESE-PRACTICAL) ESE 50

Legend: PRA: Process Assessment, PDA: Product Assessment

Note: Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Explore the role and prospects of non-conventional energy sources.

(Approx. Hrs: L+P+T= 1				
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)	
SO1.1 Classify the Conventional and non- Conventional energy sources. SO1.2 Explain the role of energy in nation's development. SO1.3 Explore the prospects of renewable energy sources.		 Unit-1.0 Energy sources 1.1 Conventional and non- Conventional energy sources. 1.2 Energy consumption as a measure of Nation's development; strategy for meeting the future energy requirements Global and National scenarios. 1.3 Non-conventional energy- Seasonal variations and availability. Renewable energy – sources and features. 1.4 Hybrid energy systems, Distributed energy systems and dispersed generation (DG). 1.5 Prospects and Achievements of renewable energy sources in India in general and Chhattisgarh state in particular. 1.6 Issues related to power generation through renewable energy sources. 	 Issues related to power generation through renewable energy sources. 	

SW-1 Suggested Sessional Work (SW):

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

a. Assignments:

- i. Survey the literatures to establish the patterns of energy use in industry.
- ii. Quantify the harmful effects of pollutants from conventional energy sources.
- iii. Prepare a chart of cumulative achievements of renewable energy sources in India

b. Mini Project:

i. Demonstrate the working principle of non conventional energy devices (at least three) with the help of classroom models.

c. Other Activities (Specify):

i. Seminar on Quantum numbers.

CO-2 Explain construction, working and maintenance of Solar energy devices and components.

Sessio	on Outcomes (SOs)	Laboratory Instruction (P)	(Appr Class room Instruction (L)	-	Hrs: L+P+T = 14) Self Learning (SL)
SO2.2 SO2.3	uses of Solar energy collectors.	LE2.1 Study of Solar Radiation by using Pyranometer. LE2.2 Study of working of Solar Distillation or Solar Still.	Unit-2.0 Solar energy 2.1 Solar radiation: Beam and diffuse radiation, Solar constant, earth sun angles, attenuation and measurement of Solar radiation, local Solar time, derived Solar angles.	•	Estimation of Solar energy constants. Seasonal Solar energy variations effects on Solar devices.
SO2.4	Explain the utility of low cost Solar cooker as alternative cooking appliances in villages.	LE2.4Demonstration/	 2.2 Flat plate collectors, concentrating collectors, elements, working and maintenance. 2.3 Solar air heaters-types, Solar driers, elements, working and 		
SO2.5	Describe the construction, working and maintenance of Solar energy devices.	study of working of solar water heater. LE2.5 Demonstration/ study of working of solar cooker	 and the storage of Solar energy-thermal storage, Electrical strage, Chemical storage. 2.5 Solar water heaters, Solar 		
SO2.6	Select photo- voltaic cells for domestic lightning in houses.	LE2.6 Study of solar water heating system of 120 litre/day capacity for the institute's hostel. LE2.7 Demonstration/ Study of working of Solar pump and calculate its discharge	 distillation, Solar still, Solar cooker, elements, working and maintenance. 2.6 Photo voltaics - Solar cells & its applications, Solar panels, Solar PV pump, Solar Home lighting systems, Solar street lights, elements, working and maintenance. 		

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

SW-2 Suggested Sessional Work (SW) :

a. Assignments:

- i. Determine the collector efficiency of Solar flat plate collector.
- ii. Identify the basic components of Solar water heater.
- iii. Determine the collector efficiency of concentrating type flat plate collector.
- iv. Identify of basic components of photo voltaic cell.
- v. Identify of basic components of Solar cooker.

b. Micro Project:

- i. Construct a model of low cost Solar cooker.
- ii. Explore different methods for tilting the axis of Solar collector to adjust for variation in Solar energy during different hours of day.

c. Other Activities (Specify):

- i. Justify the use of Solar water heater as non conventional energy devices.
- ii. Identify ways of storing Solar energy in the form of Chemical Energy, Thermal energy, Electromagnetic energy, Mechanical Energy, Electrical energy.

CO-3 Describe construction and working of Wind energy related systems and subsystems.

(Approx. Hrs: L+P+T = 14)

Sessio	on Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)	
SO3.1	Explain the energy conversion process in Wind mill.	LE3.1 Demonstration/ study of the working of a windmill.	Unit-3.0 Wind energy 3.1 Principle of Wind energy conversion; Basic components of Wind energy conversion	 Performance parameters of Wind mill. Sites selection criterion for Wind 	
	Describe the functions of basic elements of Wind mill.		systems. 3.2 Wind mill components, various types and their constructional features.	mill installation in the country.	
503.3	Classify Wind mills based on shaft position.	sed on	mills based on 3	3.3 Maintenance of Wind mills and turbines.	
SO3.4	Perform maintenance of Wind mills and turbines components.				

SW-3 Suggested Sessional Work (SW) :

- Assignments:
 - i. Prepare a demonstration model of Wind energy conversion system
 - ii. Compare horizontal and vertical Wind mill.
 - iii. Explore the potential sites for Wind mill installation in india.

• Micro Project:

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

- i. Prepare a report on various types of gear boxes used in Wind mills and turbines.
- ii. Prepare a list of mechanical components used in Wind mills and turbines.

• Other Activities (Specify):

i. Collect videos and user manuals related to maintenance of Wind mills and turbines components.

CO-4 Explain construction, working and maintenance of Biomass plants.

			(Approx	. Hrs: L+P+T = 14)
Sessio	n Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning
		(P)	(L)	(SL)
SO4.1	Explain the	LE4.1 Visit to biogas	Unit-4.0 Energy from	Study of
	constructional	plants, domestic	Biomass 4.1 Biomass	KVIP.
	details of Bio gas conversion plant.	community/institution for study and		
604.0	·	demonstration of	conversion,	
SO4.2	Designing of	biogas plants.	technologies,	
	Biogas digester.	2.0900 Prairies	Biogas generation	
SO4.3	Classify Bio gas		plants,	
	plants.		classification,	
SO4.4	Describe the		advantages and	
	maintenance		disadvantages.	
	procedure of		4.2 Constructional	
	Biogas plants		details, site	
	and components.		selection, filling a	
			digester for	
			starting,	
			maintaining Biogas	
			production, Fuel	
			properties of Bio	
			gas, and	
			applications of	
			Biogas. 4.3 Maintenance of	
			Biogas plants.	

SW-4 Suggested Sessional Work (SW) :

• Assignments:

- i. Identify the various components of Bio gas plant model.
- ii. Identify the different Bio gas digesters.
- iii. List the Performance characteristics of Bio gas plant.
- iv. Slurry treatment parameters for efficient utilization of Bio gas fuels.

• Micro Project:

- i. Make a small model of low cost Bio gas plant.
- Other Activities (Specify):
 - i. Collect videos related to maintenance of Bio gas plants.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-5 Describe construction and working of Geothermal, OTEC, Tidal and Micro Hydel energy systems and subsystems.

(Approx.	Hrs:	L+P+T	= 12)
----------	------	-------	-------

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning			
(SOs)	(P)	(L)	(SL)			
SO5.1Describe working of geothermal plant.SO5.2Explain the constructional details of micro hydel plant.SO5.3Describe the ocean thermal energy conversion system.SO5.4Explain construction and working of a tidal energy plant.	LE5.1 Working principle of geothermal power plant. LE5.2 Scope of Mini and Micro- hydro power plants in your state	 Unit-5.0 Geothermal, Micro Hydel, Ocean Thermal Energy Conversion and Tidal Energy 5.1 Geothermal plant. 5.2 Micro Hydel plant. 5.3 Ocean Thermal Electric Conversion (OTEC) systems like open cycle, closed cycle. 5.4 Energy from tides, basic principle of tidal power, single basin and double basin tidal power plants, advantages, limitation. 	Closed and open cycle OTEC plant.			

SW-5 Suggested Sessional Work (SW) :

• Assignments:

- i. Identify the different parts of geothermal plant.
- ii. Identify different components of micro hydel plant
- iii. Justify the use of geothermal plant as a renewable source of energy.
- iv. List the site selection criterion of geothermal plant.

Micro Project

i. Prepare a report on performance of various Geothermal, OTEC, Tidal and Micro Hydel energy systems and subsystems available in our country.

CO-6 Explore the utility of fuel cell and hydrogen energy

(Approx. Hrs: L+P+T = 12)

		Ň	(pp) = 0, (113) = 12)
Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO6.1 Classify the types of fuel cells. SO6.2 Describe the utility of hydrogen powered vehicle.	LE6.1 Study of different types of models of fuel cells available in lab & compare them.	 Unit 6.0 Fuel cells and Hydrogen Energy 6.1 Introduction, principle and operation of fuel cell, Types of fuel cells, application of fuel cells. 6.2 Introduction, Hydrogen Production methods, 	 Hydrogen-oxygen fuel cell. Environmental aspect of traditional vehicle. Limitations of use of hydrogen as a fuel.

•		v	500 1 2	
Ses	sion Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO6.3	Explain the		Hydrogen storage,	
	safety measures		hydrogen transportation,	
	in hydrogen		utilization of hydrogen	
	energy		gas, hydrogen as	
	utilization.		alternative fuel for	
			vehicles.	

SW-6 Suggested Sessional Work (SW):

• Assignments:

- i. Identify the different parts of fuel cell.
- ii. Analyze the working of hydrogen powered vehicle.
- iii. Describe the chemical reactions in H2 O2 fuel cell.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

- iv. Enlist the practical fields where hydrogen is used as a fuel..
- Other Activities (Specify):
 - i. Collect state wise information of usage of Fuel cells and Hydrogen Energy through www.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

J) Suggested Specification Table (For ESE of Laboratory Instruction*)

Laboratory Instruction	Short Laboratory Experiment Titles		Assessment of Laboratory Work (Marks)		
Number			rmance	Viva-	
	Church of Color Dodiction burning Duranementor	PRA	PDA 15	Voce	
LE2.1	Study of Solar Radiation by using Pyranometer	30	15	5	
LE2.2	Study of Solar Distillation or Solar Still	30	15	5	
LE2.3	Study the photovoltaic cells available in the lab.	35	10	5	
LE2.4	Demonstration/ study of solar water heater .	25	20	5	
LE2.5	Demonstration/ study of solar cooker	25	20	5	
LE2.6	Study of solar water heating system of 120 litre/day capacity for the institute's hostel	30	15	5	
LE2.7	Study of working of Solar pump and calculate its discharge.	25	20	5	
LE3.1	Demonstration/ study of the working of a windmill.	25	20	5	
LE4.1	Visit to biogas plants, domestic community/institution for study and demonstration of biogas plant .	30	15	5	
LE5.1	Working principle of geothermal power plant.	25	20	5	
LE5.2	Scope of Mini and Micro-hydro power plants in your state	25	20	5	
LE6.1	Study of different types of models of fuel cells available in lab & compare them	20	25	5	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

*Assessment rubric, process and product check list with rating scale need to be prepared by the course wise teachers for each experiment for conduction and assessment of laboratory experiments /practical's

Legend:PRA: Process Assessment, PDA: Product Assessment

Note: Only one experiment has to performed at the end semester examination of 50 Marks as per assessment scheme

K) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Field Trips
- 6. Portfolio Based Learning
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)

L) Suggested Learning Resources:

(c) Books :

S. No.	Titles	Author	Publisher and Edition*
1	Non conventional Energy Sources	G D RAI	Khanna Publishers New Delhi
2	Non-conventional Sources of Energy (Hindi)	S.S.L. PATEL	Standard Publishers and Distributors
3	Non conventional Energy Sources	BH KHAN	Tata McGraw Hill Publications
4	Renewable and Conventional energy	S Rao	Khanna Publishers New Delhi

*Latest edition of all above books should be referred

(b) Open source software and website address:

- 1. Introduction: http://indiacore.com/bulletin/kssidhu-non-conventional-energy-resources.pdf
- 2. Introduction : http://www.newagepublishers.com/samplechapter/000329.pdf
- 3. Wind turbines : http://wind.machine-

reliability.com/?adtype=Maschinenausf%C3%A4lle&addate=20161117&gclid=CJ350N6Wk9QCFdK HaAodYLICXw

- 4. Wind turbines : http://www.awea.org/operations-and-maintenance
- 5. Wind turbines : http://www.windmeasurementinternational.com/wind-turbines/omturbines.php
- 6. Wind turbines : https://www.gerenewableenergy.com/wind-energy/turbine-services/wind-turbine-maintenance.html

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

- 7. Wind turbines : https://www.wind-energy-the-facts.org/operation-and-maintenance-costs-ofwind-generated-power.html
- 8. Wind turbines : http://archive.northsearegion.eu/files/repository/20120320111424_PC_Skills-Compendiuminmaintenance.pdf
- 9. Solar panels : https://www.thesolarco.com/how-to-maintain-your-solar-panels/
- 10. Solar panels : http://www.wikihow.com/Maintain-a-Solar-Panel
- 11. Solar panels :

http://www.poweringhealth.org/Pubs/Guyana_Solar_PV_Systems_Maintenance_Guide.pdf

- 12. Parabolic trough collector maintenance: <u>http://mnre.gov.in/file-manager/UserFiles/CST-</u> <u>Manuals/PTC_E.pdf</u>
- 13. Flat plate solar collector maintenance: http://www.htproducts.com/literature/lp-364.pdf
- 14. Specifications of solar devices: http://mnre.gov.in/information/systems-specifications/
- 15. Biogas plants :

http://www.snv.org/public/cms/sites/default/files/explore/download/handbook_on_operation_ and_maintenance_of_biogas_plants_bio-slurry_use_and_management.pdf

- 16. Biogas plants : http://collections.infocollections.org/ukedu/en/d/Jg33ime/15.html
- 17. Biogas plants : https://www.youtube.com/watch?v=iOsixN3nTsc
- 18. Solar cooker : https://www.youtube.com/watch?v=7rYFXCciEx4
- 19. Solar cooker : http://www.sempersolaris.com/guide-solar-cookers/
- 20. Wind turbine : <u>https://www.youtube.com/watch?v=oPhNQ35_Dwo</u>
- 21. Wind turbine : <u>https://www.youtube.com/watch?v=OzfM9NVgcjI</u>
- 22. Wind turbine : <u>https://www.youtube.com/watch?v=haPheNEitHQ</u>
- 23. Fuel cells: https://www.youtube.com/watch?v=_TqSU21aWoA

(c) Others:

- 1. Learning Packages.
- 2. Manufacturers' Manual

M) List of Major Laboratory Equipment and Tools:

S.	Name of Equipment	Broad	Relevant Experiment
No.		Specifications	Number
1	Flat plate Solar collector	Orientation Vertical (Portrait) Height / Width / Depth (mm) 2035 / 1233 / 80 Overall collector area (mm) 2.51 Aperture area (m2) 2.35 Absorber area (m2) 2.32 Weight (empty) (kg) 38	LE2.4

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

S .	Name of Equipment	Broad	Relevant Experiment
No.		Specifications	Number
		Capacity (solar fluid) (I) 1.85	
		Solar glass transmission (%) 91	
		Solar radiation absorption (%) 95	
		Solar radiation emission (%) 5	
		Efficiency η 0 (%) 79.0	
		Efficiency coefficient a1 (W/M2K) 2.41	
		Efficiency coefficient a2 (W/M2K2) 0.049	
		Max operating pressure (bar) 10	
		Stagnation temperature (<c) 210<="" td=""><td></td></c)>	
		Certification CE 0036 & Solar Keymark	
		Absorber Sheet Aluminium	
		Absorber plate coating Sunselect (selective)	
		Absorber tube Copper	
		Absorber tube copper Absorber tube joints Laser welded	
		Frame Aluminium Extruded sides / sheet rear	
		Glazing Safety glass (low iron), 3.2mm	
		Rear insulation 40mm	
		Solar fluid Water / propylene glycol	
		Flow / return connections DN 16 (G3/4")	
2	Parabolic trough Solar	Parabolic trough reflecting surface Reflectors with	LE2.4
2	collector with tracking	aluminium sheet or mirror	LLZ.4
	system	Total Collector Area 288m2	
	system	Number of collector modules 48	
		Number of collectors per row 8	
		Number of rows 6	
		Area of each module 6m2	
		Module power 2 kW	
		Coated receiver tubes enclosed in glass	
		Fluid Inlet Temperature (nominal) 110 C	
		Fluid Outlet Temperature (nominal) 220 C	
		Tracking- Moves East-West Fixed North-South;	
		Control system- Programmable Logic Controller	
		(PLC) or Manual; Drive mechanism- Servo or	
		Stepper motor, single axis.	
3	Working models of wind	Readymade kits	LE3.1
	mills and turbines	Nouginudo kito	
4	Solar appliances like drier,	• Solar Lantern: Housing material ABS, Chimney	LE2.2 , 2.3, 2.4 , 2.5 ,
	cooker, lantern etc.	Material Acrylic, Polycarbonate or Shane, LED	2.6, 2.7
		SMD LED, SPV Module High efficiency silicon	=,=,
		cell based SPV module, Battery 12V-7.2Ah @	
		C-20 SMF lead acid battery of Absorbed	
		Electrolyte type.	
		• Solar Fan: High speed ceiling fan, Operated by	
		12V DC 1.5A, RPM = 320, SIZE = 1200MM,	
		MULTI SPEED	
		• Solar Air drier: can generate hot air with	
		temperature ranges from 40°C to 100°C. used	
		for removing moisture from variety of	
		agricultural products and food items without	

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
		causing any harmful affect Solar Distillation Capacity – 200 litres Solar water pumps Solar torches Solar street lighting systems Solar traffic blinker Solar mobile charger	
5	Demonstration model of Biogas plant.		LE4.1
6	Models, Charts and videos related to non conventional sources of energy		LE 5.1 & 5.2
7	Digital Pyranometer	Response Time less than 15 seconds , Battery life : approx. 100 hr , Sensitivity : 5 to $20\mu V / W/m2$, Direction Response less than 20 W/m2 , Field of view 180 degree , Temperature response less than 5%	LE2.1
8	Fuel Cells	Hydrogen / Air Fuel Cell PEM Type Energy Conversion: 40%	LE6.1

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

Course Outcomes (COs)		Programme Outcomes (POs)								Programme Specific Outcomes (PSOs)			
	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Experime nts and practice	PO-4 Engineering Tools	PO-5 The engineer and society	PO-6 Environment and sustainability		PO-8 Individual and team work		PO-10 Life-long learning	PSO- 1	PSO- 2	PSO- 3
CO-1 Explore the role and prospects of non- conventional energy sources.	1	2	-	-	2	3	1	1	2	2	-	-	-
CO-2 Explain construction, working and maintenance of Solar energy devices and components.	1	2	2	2	2	3	1	2	2	2	-	2	1
CO-3 Describe construction and working of Wind energy related systems and subsystems.	1	2	2	2	2	3	1	2	2	2	-	2	1
CO-4 Explain construction, working and maintenance of Biomass plants.	1	2	3	2	2	3	1	2	2	2	-	2	1
CO-5 Describe construction and working of Geothermal, OTEC, Tidal and Micro Hydel energy systems and subsystems.	1	2	2	2	2	3	1	2	2	2	-	2	1
CO-6 Explore the utility of fuel cell and hydrogen energy in various areas.	1	2	2	2	2	3	1	2	2	2	-	2	1

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

O) Course Curriculum Map:

POs & PSOs No.	COs No. & Title	SOs No.	Laboratory Instruction (P)	Classroom Instruction (L)	Self Learning (SL)
PO 1,2,5,6,	CO-1 Explore the role and prospects	SO1.1		Unit-1.0 Energy sources	
7,8,9,10	of non-conventional energy	SO1.2		1.1,1.2,1.3,1.4,1.5, 1.6	
	sources.	SO1.3			
PO 1,2,4,5,6,	CO-2 Explain construction, working	SO2.1		Unit-2.0 Solar energy	
7,8,9,10	and maintenance of Solar	SO2.2	LE2.1 , LE 2.2 LE2.3 , LE	2.1, 2.2, 2.3, 2.4, 2.5, 2.6	
PSO 2,3	energy devices and	SO2.3	2.4 , LE2.5 , LE 2.6 ,		
	components.	SO2.4	LE 2.7		
		SO2.5			
		SO2.6			
PO 1,2,4,5,6,	CO-3 Describe construction and	SO3.1		Unit-3.0 Wind energy	As mentioned
7,8,9,10	working of Wind energy related	SO3.2	LE3.1	3.1, 3.2, 3.3	in page
PSO 2,3	systems and subsystems.	SO3.3			relevant
		SO3.4			pages
PO 1,2,4,5,6,	CO-4 Explain construction, working	SO4.1		Unit-4.0 Energy from Biomass	pages
7,8,9,10	and maintenance of Biomass	SO4.2	LE4.1	4.1, 4.2, 4.3	
PSO 2,3	plants.	SO4.3			
		SO4.4			
PO 1,2,4,5,6,	CO-5 Describe construction and	SO5.1		Unit-5.0 Geothermal, Micro	
7,8,9,10	working of Geothermal, OTEC,	SO5.2	LE5.1 , LE5.2	Hydel, Ocean Thermal Energy	
PSO 2,3	Tidal and Micro Hydel energy	SO5.3		Conversion and Tidal Energy	
	systems and subsystems.	SO5.4		5.1, 5.2, 5.3, 5.4	
PO 1,2,4,5,6,	CO-6 Explore the utility of fuel cell	SO6.1		Unit-6.0 Fuel cells and	
7,8,9,10	and hydrogen energy in various	SO6.2	LE6.1	Hydrogen Energy	
PSO 2,3	areas.	SO6.3		6.1, 6.2	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	: 2000256(037)
B)	Course Title	: Engineering Drawing
C)	Pre- requisite Course Code and Title	:
D)	Rationale	:

Engineering Drawing is a language of engineers that enables them to visualize the ideas converting to realization by drawing them. It helps in communicating the shape, size, finish, color and construction of any object and aids in improving the concepts, imagination and visualization power of an engineer. It is a graphical language that communicates all the information about an object from an engineer, who designed it, to an artisan who will make it. This course aims at developing the ability to draw and read various scales, engineering curves, projection of line point and plane, isometric projection and introduces the application of Computer aided drafting software like AutoCAD software for drafting of engineering drawings thereby building the foundation for digital drawing environment for further courses related engineering drawing.

E) Course Outcomes:

- CO-1 Use drawing instruments, scales, and standard norms to create drawings.
- CO-2 Draw various engineering curves.
- CO-3 Draw the projection of points, lines and planes with different conditions.
- CO-4 Interpret and draw the orthographic and sectional views of an object.
- CO-5 Develop isometric view from orthographic views of objects.
- CO-6 Use computer aided drafting software to draw 2D geometric entities.

F) Scheme of Studies:

S.No	Board of Study	Course Code	Course Title	Schen	Scheme of Studies (Hours/Week)				
	Study	Code	nue	L	Ρ	Т	Credit L+(P+T)/2		
1	Mechanical Engineering	2000256(037)	Engineering Drawing	2	-	4	4		

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture and others), P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), T- Tutorial includes Sessional Work (SW) (assignment, seminar, mini project etc.) and Self Learning(SL), C:Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

G) Scheme of Assessment:

S.No	Board of Study	Course Code	Course Title	5		nination			
	orady	oode	inte			5		Total	
				ESE	СТ	TA	ESE	TA	Marks
1	Mechanical Engineering	2000256(037)	Engineering Drawing	100	20	30	-	-	150

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

• **PROGRESSIVE ASSESSMENT:** (50 MARKS)

1. CLASSROOM ASSESSMENT (CA): (a) CLASSTEST (CT) - 20,

(b) TEACHER'S ASSESSMENT (TA) - 30 (Sessional work (SW) -20, Attendance (ATT) -10)

2. LABORATORY ASSESSMENTS (LA): NIL

• END SEMESTER ASSESSMENT (ESE): (100 MARKS)

- 1. END SEMESTER EXAM (ESE-THEORY) 100
- 2. END SEMESTER EXAM (ESE-PRACTICAL) ESE NIL

Note: Separate passing is must for End Semester Exam (Theory) and End Semester Exam (Practical).

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (L), Laboratory Instruction (P), T- Tutorial Includes Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

CO-1 Use drawing instruments, scales, and standard norms to create drawings.

(Approx. Hrs: L+P+T = 12)

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
			Self Learning (SL) Different type of drawing and instruments
dimensioning style for a given geometrical entity.		 Scales - full scale, reduced scale and enlarged scale. 1.5 Dimensioning – terms and notations as per BIS, requirement of dimensioning - Dimension line, Extension lines and Leader lines, 	

0)iploma in Civil/Elect	Semester - II		
	Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
			Dimensioning systems, Methods of dimensioning, important dimensioning rules.	

SW-1 Suggested Sessional Work (SW):

Assignments: •

- Draw triangles, without using a protractor, having base angles of 75° and 15° & 105° and 45° İ. on a 75 mm long line as base.
- ii. Prepare a neat sketch of 'title block' giving all details in a given drawing sheet.
- iii. Write freehand with single stroke, vertical capital letters of 3mm height.
- iv. Sketch the difference between progressive and parallel dimensioning.
- v. Draw a simple scale for a given set of data.

Mini Project:

Collect production and construction drawings from nearby industries/shop and builders İ. respectively and prepare a list of types of letters, scales and dimensioning used.

CO-2 Draw various conic curves.

(Approx. Hrs: L+P+T = 16)

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)		Self Learning (SL)
 SO2.1 Draw an ellipse for a given set of data. SO2.2 Draw a parabola for a given set of data. SO2.3 Draw a hyperbola for a given set of data. SO2.4 Identify various conic curves used in different components. 		 Unit-2.0 Constructions of conic curves 2.1 Conics: Cone – conic sections - Definition of locus, focus, directrix, axis, Vertex and eccentricity. Definition: ellipse, parabola and hyperbola. 2.2 Ellipse: Construction of ellipse by concentric circle method, rectangular method and Eccentricity method when focus and directrix are given. 2.3 Parabola: Construction of parabola by rectangular method, parallelogram method and eccentricity method when focus and directrix are given. 2.4 Hyperbola: Construction of hyperbola by rectangular method and eccentricity method when focus and directrix are given. 	•	Involutes of a circle Cycloid

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

SW-2 Suggested Sessional Work (SW) :

- Assignments:
 - i. Draw an ellipse for a given set of data and write its equation also.
 - ii. Draw a parabola for a given set of data.
 - iii. Draw a hyperbola for a given set of data.

• Mini Project:

- i. Explore the applications of engineering curves in different fields of engineering and prepare a short report.
- Other Activities (Specify):
 - i. Collect production and construction drawings from nearby industries/shop and builders respectively and prepare a list of types of conic curves used.
 - ii. Prepare a list of industrial and household components in which conic curves are used and justify the utility of these curves.
 - iii. Observe the effect of changing eccentricity in case of parabola and hyperbola.
 - iv. Write the equations for parabola in different quadrants.
 - v. Through experimentation, justify that the eccentricity of an ellipse is 1.

CO-3 Draw the projection of points, lines and planes with different conditions.

(Approx. Hrs: L+P+T = 20)

Sess	sion Outcomes	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
SO3.1 SO3.2 SO3.3	sion Outcomes (SOs) Draw the projection of points for a given set of conditions. Draw the projection of line for a given set of conditions. Draw the projection of planes for a given set of conditions.	Laboratory Instruction (P)	Class room Instruction (L) Unit-3.0 Projections of points, lines and planes 3.1 Projection of points: Concept of quadrant, first angle and third angle projection. Projection of points – points on different quadrants and on the reference planes. 3.2 Projection of straight lines: Projection of straight lines – Line in the first quadrant and on the reference Planes, perpendicular to one	Self Learning (SL) Projections on auxiliary planes
			plane and parallel to other plane, inclined to one plane and parallel to the other plane, parallel to both the planes and	
			inclined to both the planes. 3.3 Projection of Planes:	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

Session Outcomes (SOs)	Laboratory Instruction (P)	Class room Instruction (L)	Self Learning (SL)
		 Concept of planes, a) Projection of planes parallel to one of the reference plane. b) Projection of plane inclined to one reference plane and perpendicular to another. c) Projection of plane inclined to both the reference planes. Note: Triangle, Square / rectangle and circle shape should be included in various plane problems. 	

SW-3 Suggested Sessional Work (SW) :

a. Assignments:

- i. Draw the projection of points for a given set of conditions.
- ii. Draw the projection of lines for a given set of conditions.
- iii. Draw the projection of planes for a given set of conditions.

b. Mini Project:

- i. Cut triangular, square, rectangular and circular shaped cardbord/thermocole pieces and observe them by placing in different positions as specified in 3.3.
- ii. Cut a cardbord/thermocole cone with various section planes to get circle, ellipse, parabola and hyperbola.

c. Other Activities (Specify):

i. Collect production and construction drawings from nearby industries/shop and builders respectively and observe projection of various shaped planes.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-4 Interpret and draw the orthographic and sectional views of an object.

(Approx. Hrs: L+P+T = 22)

Session Outcomes	Laboratory	Class room Instruction	Self Learning (SL)
(SOs)	Instruction (P)	(L)	
SO4.1 Draw orthographi c views of a given object. SO4.2 Draw sectional views of a given object.		 Unit-4.0. Orthographic projection and Section of solids 4.1 Introduction, First angle projection, Third angle projection, Symbols and comparison of first and third angle projections. 4.2 Projection of simple isometric objects – front view/ top view/ right/ left side view. 4.3 Concept of sectioning planes , Auxiliary planes and true shape of section ,Practice problems for drawing projections and section of solids 	 View video programmes related to orthographic projection.

SW-4 Suggested Sessional Work (SW) :

a. Assignments:

- i. Draw minimum three drawing sheets on orthographic views of simple machine parts.
- ii. Draw minimum three drawing sheets on sectional views of objects.

b. Mini Project

- i. Visit your institute's workshop and draw top, front and side views of single point cutting tool.
- ii. Take a medium sized hexagonal nut and draw its top and front view.

c. Other Activities (Specify):

i. Collect production and construction drawings from nearby industries/shop and builders respectively and observe the type of orthographic projection, symbol of projection and various views used.

CO-5 Develop isometric view from orthographic views of objects.

(Approx. Hrs: CI+LI+SW+SL = 18)

Session Outcomes		Laboratory Instruction	Class room Instruction (CI)	Self Learning
(SOs)		(L)		(SL)
SO5.1	SO5.1 Draw Isometric view from orthographic views of given objects		 Unit-5.0 Isometric Projection 5.1 Isometric axis, lines, and planes, isometric scale, isometric projection, isometric drawing. 5.2 Isometric projection of objects containing rectangular, circular, cylindrical shapes and slots on sloping and plane surfaces. 	 View video programmes related to this outcome.

Legend: L: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and others),

P: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies),T- Tutorial Includes, Sessional Work(SW) (includes assignment, seminar, mini project etc.), and Self Learning(SL).

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Draw minimum three sheets on isometric views.

b. Mini Project:

i. Take a medium sized hexagonal nut and draw its isometric projection

c. Other Activities (Specify):

i. Collect production and construction drawings/photographs in which isometric, oblique and perspective projections are used.

CO-6 Use Computer aided Drafting software like AutoCAD to draw 2D geometric entities.

		(Ар	prox. Hrs: L+P+T = 24)
Session Outcomes (SOs)	Laboratory Class room Instruct Instruction (P)		Self Learning (SL)
SO6.1 Use computer aided drafting software like AutoCAD for creating simple drawings.		 Unit-6.0 Computer aided Drafting 6.1 Basics of AutoCAD AutoCAD interface, screen layout, starting commands from menus, Coordinate system, Angular measurements, Point specification, Drawing aids - Grid, Snap, Ortho, Osnap, Units, Limits, Layers, Linetype. 6.2 Creating basic drawings Drawing objects - lines, arc, circles, ellipses, polyline and polygons. 6.3 Modify commands - erase, copy, move, rotate, scale, stretch, array. 6.4 Printing and plotting of drawings. 	 View video programmes related to Auto Cad to draw 2D geometric entities.

SW-6 Suggested Sessional Work (SW):

a. Assignments:

i. Draw minimum five drawings using AutoCAD software.

b. Mini Project:

- i. Prepare an A4 template of your institute with title block and institute logo.
- ii. Prepare a spur gear of 20° pressure angle using array command.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

c. Other Activities (Specify):

i. Collect atleast two AutoCAD tutorial videos from web and submit them to your teacher.

Note: Performance under Laboratory and Sessional work may appear in more than one COs/SOs.

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit Titles	Ν	Total		
Number	Unit Ittles	R	U	Α	Marks
	Basics of Engineering Drawing	3	3	8	14
	II Constructions of conics		3	8	14
	Projections of point, line and planes	3	-	15	18
IV	Orthographic Projection and Section of solids	3	-	14	17
V	Isometric Projection	3	-	14	17
VI	VI Computer aided Drafting		3	14	20
	Total	15	9	76	100

Legend: R: Remember, U: Understand, A: Apply and above

J) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Industrial visits
- 4. Industrial Training
- 5. Field Trips
- 6. Portfolio Based Learning
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration, CBT, Blog, Face book, Mobile)

K) Suggested Learning Resources:

(d) Books :

S. No.	Titles	Author	Publisher and Edition*
1	Engineering Drawing	N.D. Bhatt	Charotar Publisher
2	Engineering Drawing	R.B. Gupta	Satya Prakashan
3	Engineering Drawing	Gujral & Shende	Khanna Publisher
4	Engineering Drawing	R.K.Dhawan	S.Chand
5	Engineering Drawing	P.J.Shah	S.Chand
6	Engineering Drawing	M.B.Shah, B.C.Rana	Pearsons
7	Engineering Graphics with	A.K.Sarkar, A.P.Rastogi,	PHI
	AutoCAD	D.M. Kulkarni	
8	Engineering Drawing and	T. Jeyapoovan	Vikas
	Graphics using AutoCAD		

*Latest edition of all above books should be referred

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

(b) Open source software and website address:

- 1. Introduction: <u>https://www.youtube.com/watch?v=z4xZmBpXIzQ</u>
- 2. dimensioning system : <u>https://www.youtube.com/watch?v=OF3S6BjMKsI</u>
- 3. Basic of engineering drawing : https://www.youtube.com/watch?v=FEju-hA5Peo
- 4. Engineering scales : https://www.youtube.com/watch?v=n9iQcttWHAo
- 5. Engineering curves : <u>https://www.youtube.com/watch?v=8sZkhL64-Qw&list=PLeFT-Ztj-</u> s49OnKf3zO10MhVBH16GvZLn
- 6. Conic section : <u>https://www.youtube.com/watch?v=1AMyZ-WzPB0</u>
- 7. 1st and 3rd angle projection : <u>https://www.youtube.com/watch?v=mcxUTNkSyp4</u>
- 8. Orthographic projection : <u>https://www.youtube.com/watch?v=nDmwL1IWolc</u>
- 9. Projection of point : <u>https://www.youtube.com/watch?v=Wy10RORC0s8</u>
- 10. Projection of line : <u>https://www.youtube.com/watch?v=UewSQ061MzM</u>
- 11. Projection of plane : https://www.youtube.com/watch?v=KWuW5VZf9a0
- 12. Basic of isometric projection : <u>https://www.youtube.com/watch?v=p7Tz17Af-zE</u>
- 13. Isometric projection : <u>https://www.youtube.com/watch?v=k2frX4CXJ_Y</u>
- 14. Auto cad : <u>https://www.youtube.com/results?search_query=autocad+for+</u> beginners+in+hindi+
- 15. Auto cad : https://www.youtube.com/watch?v=ohjh0JjQHnY
- 16. Auto cad : https://www.youtube.com/watch?v=ZugYdLxsg0E
- 17. Nptel Web reference : http://nptel.ac.in/courses/112103019/15

(c) Others:

- 1. Learning Packages.
- 2. Manufacturers' Manual

L) List of Major Classroom Instruction Aid Equipments and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1	Computer aided drafting software like AutoCAD	Latest educational licensed network version	Not Required
2	CAD workstations	latest configuration	Not Required
3	Drawing boards	A1 size	Not Required
4	Interactive board (165 x 130 cm)	Supports dual touch, dual write and intuitive gestures, such as toss, rotate and zoom, available with multitouch operating systems, such as Windows®	Not Required

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
5	Sample production/construction drawings	From nearby industries, construction companies and developed by senior teachers of the state	Not Required
6	Printer/plotter	A3 size	Not Required
7	Models for projection and demonstration	Wooden models	Not Required

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

M) Mapping of POs & PS	M) Mapping of POs & PSOs with COs:												
Course Outcomes (COs)		Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)					
	PO-1 Basic knowledge	PO-2 Discipline knowledge	PO-3 Practice	PO-4 Engineerin g Tools	engineer	PO-6 Environment and sustainability		PO-8 Individual and team work		•	PSO- 1	PSO- 2	PSO- 3
CO-1 Use drawing instruments, scales, and standard norms to create drawings.	3	3	2	3	1	1	1	1	1	3	-	-	-
CO-2 Draw various conic curves.	3	2	3	2	1	1	2	1	2	3	-	-	-
CO-3 Draw the projection of points, lines and planes with different conditions.	2	2	2	2	1	1	1	1	3	3	-	-	
CO-4 Interpret and draw the orthographic & sectional views of an object.	2	3	2	2	1	1	1	1	3	3	-	-	-
CO-5 Develop isometric view from orthographic views of objects.	3	3	3	2	1	1	2	1	3	3	-	-	-
CO-6 Use computer aided drafting software like AutoCAD to draw 2D geometric entities.	3	3	3	2	1	1	2	1	3	3	3	-	-

Legend: 1 – Low, 2 – Medium, 3 – High

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

N) Course Curriculum Map:

POs & PSOs No.	COs No. & Titles	SOs No.	Laboratory Instruction (P)	Classroom Instruction (L)	Self Learning (SL)
PO-1,2,3,4,5,6,	CO-1 Use drawing instruments,	SO1.1	Not applicable	Unit-1.0 Basics of Engineering	
7,8,9,10	scales, and standard norms	SO1.2		Drawing	
	to create drawings.	SO1.3			
		SO1.4		1.1, 1.2, 1.3, 1.4, 1.5	
		SO1.5			
PO-1,2,3,4,5,6,	CO-2 Draw various conic curves.	SO2.1	Not applicable	Unit-2.0 Construction of Conics	
7,8,9,10		SO2.2			
		SO2.3		2.1, 2.2 ,2.3	
		SO2.4			
PO-1,2,3,4,5,6,	CO-3 Draw the projection of	SO.3.1	Not applicable	Unit-3.0 Projection of points,	As mentioned
7,8,9,10	points, lines and planes with	SO3.2		lines and planes	in page
	different conditions.	SO3.3		3.1, 3.2, 3.3	relevant
PO-1,2,3,4,5,6,	CO-4 Interpret and draw the	SO4.1	Not applicable	Unit-4.0 Orthographic projection	pages
7,8,9,10	orthographic and sectional	SO4.2		and Section of solids	
	views of an object	SO4.3		4.1, 4.2	
PO-1,2,3,4,5,6,	CO-5 Develop isometric view from	SO5.1	Not applicable	Unit-5.0 Isometric Projection	-
7,8,9,10	orthographic views of	SO5.2			
	objects.			5.1, 5.2	
PO-1,2,3,4,5,6,	CO-6 Use computer aided drafting	SO6.1	Not applicable	Unit-6.0 Computer aided Drafting	
7,8,9,10	software like AutoCAD to	SO6.2			
	draw 2D geometric entities.	SO6.3			
		SO6.4			

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

A)	Course Code	: 2000264(046)
B)	Course Title	: Seminar & Technical Presentation Skill Part – II
C)	Pre- requisite Course Code and Title	:
D)	Rationale	:

Technical Writing and Presentation Skills are core skills to be developed in diploma graduates as students exchange information and convey their ideas and opinions with different stakeholders. Students in technical institutes need to be trained for this. The focus of the course is to develop a wide variety of soft skills starting from communication, to work in different environments, developing emotional sensitivity, learning creative and critical decision making, developing awareness of how to work with and negotiate with people The key areas addressed are conversation skills, group skills, persuasion skills, presentation skills, personal grooming, positive thinking and vocational skills

E) Course Outcomes:

- CO-1 Exhibit impressive personality in society.
- CO-2 Explore different Leadership skills and Team work
- CO-3 Develop different skills of group discussion.

F) Scheme of Studies:

S.No	Board of Study	Course Code	Course Title	Scheme of Studies (Hours/Week)				
	Study	Code	- Title -	L	Р	Т	Credit L+(P+T)/2	
1	Humanities	2000264(046)	Seminar & Technical Presentation Skill Part–II	-	2	-	1	

Legend: L-Lecture, P-Practical, T-Tutorial

G) Scheme of Assessment:

S.No	Board of Study	Course Code	Course Title	Scheme of Examination					ion
	j			Theory		Practical		Total	
				ESE	СТ	TA	ESE	TA	Marks
1	Humanities	2000264(046)	Seminar & Technical Presentation Skill Part–II	-	-	-	-	10	10

Legend: ESE: End Semester Exam, CT: Class Test, TA: Teacher Assessment

H) Course-Curriculum Detailing:

This course curriculum detailing depicts learning outcomes at course level and session level and their attainment by the students through Classroom Instruction (Cl), Laboratory Instruction (Ll), Sessional Work (SW) and Self Learning (SL). Students are expected to demonstrate the attainment of Session Outcomes (SOs) and finally Course Outcomes (COs) upon the completion of course.

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

CO-1 Exhibit impressive personality in society.

Session Outcomes (SOs)	Laboratory Instruction/Classroom Instruction (LI/CI)	Self Learning (SL)
SO-1 Understand and practice positive traits for an impressive personality.		 Motivational Movies, Videos, Lectures, Interviews, Yoga etc.,

CO-2 Explore different Leadership skills and Team work

Session Outcomes (SOs)	Laboratory Instruction/Classroom Instruction (LI/CI)	Self Learning (SL)
SO-2	2.1 Skills for a good Leader.	
Understanding	Different Leadership Styles	
Leadership & Team work	Autocratic, Democratic, Ethical,	
	Transformational,	
	Team Leadership	
	2.2 Necessity of Team	
	Work Personally,	
	Socially, professionally and	
	Educationally	

CO-3 Develop different skills of group discussion.

Session Outcomes (SOs)	Laboratory Instruction/Classroom Instruction (LI/CI)	Self Learning (SL)
SO-3	3.1 Weighing Positives &	
Participate in Group Discussion	Negatives in Group Discussion	
	3.2 Dos and Don'ts of Group Discussion	
	3.3 Initiating, continuing and	
SO-4 Use proper tools to manage Time in different situations.	 concluding a Group Discussion 4.1 Principles of Time Management 4.2 Criteria governing Time Management 4.3 Prioritizing work 	

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

SW- Suggested Sessional Work (SW):

a. Assignments:

Preparing skits to show Creativity, communication, critical thinking

b. Mini Project:

Recorded Lectures may be played in the class and students are asked to listen and answer.

c. Other Activities (Specify):

Self Introduction, Speech and Spell Test, movie clips, games, examples, story/sharing questionnaire/role play/exercises/ Task, Video/Audio recording

I) Suggested Specification Table (For ESE of Classroom Instruction):

Unit	Unit Titles	Ma	Total		
Number		R	U	Α	Marks
I	Personal Grooming	1	-	2	3
II	Leadership & Team Work	-	1	2	3
	Group Discussion	-	-	2	2
IV	Time Management	-	1	1	2
	Total	1	2	7	10

Legend: R: Remember, U: Understand, A: Apply and above

Note: There will be no end semester examination for laboratory instructions and the practical activity will be assessed for term work.

J) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 8. Brainstorming

K) Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	How to achieve success and happiness	Beau Norton	CreateSpace Independent Publishing Platform	Latest edition
2	Living English Structure	Allen	Cambridge Publications	Fifth edition(2009)
3	The Quick and Easy Way to Effective	Dale Carnegie	Amazing Reads	23 January 2018

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

	Speaking			
4	English	Gnanamurali, M.	S. Chand and Co.	2011
	Grammar at		New Delhi,	ISBN:9788121929042
	Glance			
5	Elementary	Agarwal N.K.	Goyal Brothers	Latest Edition
	English		Prakashan	
	Grammar and			
	Composition			
6	Covey Sean,	Covey Sean,	Fireside Publishers,	
	Seven Habit of		1998.	
	Highly Effective			
	Teens			
7	How to win	Carnegie Dale,	Simon & Schuster,	
	Friends and		New York 1998.	
	Influence			
	People			
8	Thomas A	Thomas A Harris	New York-Harper and	
	Harris, I am ok,		Row, 1972	
	You are ok			
9	Emotional	Daniel Coleman	Bantam Book, 2006	
	Intelligence,			
	Bantam Book,			
	2006			
10	Chanakya's 7	Pillai Radhakrishnan	Jaico Publishing	ISBN: 9788184954012,
	Secrets of		House	8184954018
	Leadership			

(b) Open source software and websiteaddress:

- 1. <u>https://www.englishgrammar.org/</u>
- 2. http://www.englishgrammarsecrets.com/
- 3. https://www.usingenglish.com/handouts/
- 4. http://learnenglish.britishcouncil.org/en/english-grammar
- 5. https://www.englishclub.com/grammar/
- 6. http://www.perfect-english-grammar.com/
- 7. http://www.englishteachermelanie.com/category/grammar/
- 8. https://www.grammarly.com/blog/category/handbook
- 9. https://www.britishcouncil.in/english/learn-online
- 10. http://learnenglish.britishcouncil.org/en/content
- 11. http://www.talkenglish.com/
- 12. languagelabsystem.com
- 13. www.wordsworthelt.com

c) Others:

- 1. Learning Packages.
- 2. Lab Manuals.
- 3. Language software Manual
- 4. Users' Guide

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

L) List of Major Laboratory Equipment and Tools:

S. No.	Name of Equipment	Broad Specifications	Relevant Experiment Number
1	Computers	A complete computer system with headphones & Speakers	All
2	Soft ware	English communication software's – Globarina, A- One Solutions, Wordsworth, Spears	All
3.	Computer tables & chairs	Depending upon the size of the Language Lab	All

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

N) Mapping of POs & PSOs with COs:

	Course Outcomes (COs)		Programme Outcomes (POs)									Spe Outc	amme cific omes Os)
		PO-1 Basic knowledge	PO-2 Discipline knowledge		PO-4 Engineering Tools	engineer	PO-6 Environment and sustainability	PO-7 Ethics	PO-8 Individual and team work	PO-9 Communic ation	PO-10 Life-long learning	PSO-1	PSO-2
CO-1	Exhibit impressive personality in society.	2	1	1	1	-	-	-	-	2	2	1	1
CO-2	Explore different Leadership skills and Team work	1	1	2	2	-	-	-	-	2	3	1	1
CO-3	Develop different skills of group discussion.	1	2	2	1					1	2	1	1

Legend:1 – Low, 2 – Medium, 3 – High

Diploma in Civil/Electrical/EEE/Mining & Mine Surveying (Group-IA)

Semester - II

O) Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO1,2,3,4,9,10	CO-1 Exhibit impressive	SO1.1	LE.1.1		
	porconality in cociety		LE1.2		
PSO 1,2	personality in society.		LE1.3		
			LE1.4		
			LE1.5		
			LE1.6		
			LE1.7		
PO 1,2,3,4,9,10	CO-2 Explore different Leadership skills	SO2.1	LE2.1		As mentioned
	and Team work		LE2.2		in relevant
PSO 1,2					pages
PO 1,2,3,4,9,10	CO-3 Develop different skills of group	SO3.1	LE3.1		
PSO 1,2	discussion.		LE3.2		
			LE3.3		
			LE4.1		
			LE4.2		
			LE4.3		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in Laboratory, Workshop, field or other locations using different instructional strategies) SL: Self Learning

-----000------