Name of Pro	ogram:	Bachelor of Technology.			
Branch:	Electronics & Telecommunication		Semester:	VII	
Subject:		RF & Microwave Engineering	Code:	D028711(028)	
Total Theor	y Periods:	40	Total Tutorial Periods:	Ten (Minimum)	
Class Tests:		Two (Minimum)	Assignments:	2 (Minimum)	
ESE Duratio	on:	Three Hours	Max Marks:100	Min Marks: 35	
Course	• To inculate und	lorstanding of the basics require	d for circuit represented	tion of DE notworks	
	 To inculcate und To deal with the 	e issues in the design of microw	ave amplifier	IOII OI KI ⁺ lietworks.	
	 To deal with the To instill knowl 	ledge on the properties of variou	ave amplifier.	nts	
	 To deal with the 	e microwave generation and mic	rowave measurement t	echniques	
	Introduction: RF	& Microwave spectrum Histo	rical Background Typi	cal application of RF &	
	Microwaves				
	Two port Network	Theory: Review of Low frequer	ncy parameters: Impedance	ce, Admittance, Hybrid and	
UNIT I	ABCD parameters,	Different types of interconnection	of Two port networks, H	High Frequency parameters,	
	Formulation of S parameters, Properties of S parameters, Reciprocal and lossless Network. Transmission				
	matrix, RF behavior of Resistors, Capacitors and Inductors.				
	RF Amplifiers ar	nd matching networks: Charact	eristics of Amplifiers.	Amplifier power relations.	
	Stability considerations Stabilization Methods Noise Figure Constant VSWR Broadband High power				
LINUT H	and Multistage Amplifiers. Impedance matching using discrete components. Two component matching				
	Networks, Frequency response and quality factor, T and Pi Matching Networks, Microstrip Line Matching				
	Networks				
	Microwave Gener	ration: Limitation of conventior	nal tubes in microwave	s, working principles and	
	characteristics of Two cavity and multicavity Klystron. Reflex Klystron. Traveling wave tube. Magnetron				
	Backward wave Crossed field amplifier and oscillator				
	Passive and active	Microwave Devices: Tunnel dic	de Gunn diode IMPAT	T diode TRAPATT diode	
	Microwave bipolor transistor, betero junction bipolor transistor, parametria amplifiar, Varaeter diodes				
UNIT IV	Passive Components: S- matrix Directional couplers Rathe-hole coupler T junctions Magic to Utbrid				
	ring Circulator Isolator matched Terminators Attenuators Phase shifters Power dividers				
	Microwaya Maasu	Miarowaya Magguramontal Magguramont of VSWD Law Madium and High Maggurament of accurate			
	Bolometer Messur	ement of Impedance Frequency (factor Attenuation S pr	promotors	
	Moosuring Instrum	nents · Dringinla of operation and	application of VSWP ma	tor Dowor motor Spootrum	
UNIT V	analyzar Natwork	analyzor	application of v 5 w K me	ter, i ower meter, spectrum	
	Annliestor of M	anaryzon,	to communication D-1-	r Industrial application of	
	Application of Mi	crowaves: introduction to satelli	te communication, Kada	i, mousirial application of	
	microwaves.				

Text books:

- 1. Microwave Devices & Circuits S.Y.Liao Pearson Education/PHI
- 2. Microwave Engineering , Monojit Mitra , Dhanpath Rai New Delhi
- 3. Microwaves ,K.C.Gupta ,New Age Publishers
- 4. Microwave Engineering , Kulkarni , Dhanpat Rai New Delhi
- 5. Reinhold Ludwig and Gene Bogdanov, "RF Circuit Design: Theory and Applications", Pearson Education Inc., 2011
- 6. Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons Inc, 2005

REFERENCES:

- 1. R. F. Soohoo, "Microwave Electronics", Wesley publication, 1971.
- 2. D.M.Pozar," Microwave Engineering (3/e)", Wiley India, 2009.
- Thomas H Lee, "Planar Microwave Engineering: A Practical Guide to Theory, Measurements and Circuits", Cambridge University Press, 2004.
- 4. Mathew M Radmanesh, "RF and Microwave Electronics", Prentice Hall, 2000.
- 5. Annapurna Das and Sisir K Das, "Microwave Engineering", Tata Mc Graw Hill Publishing Company Ltd, New Delhi, 2005.

Course Outcomes:

Upon completion of the course, students will be able to:

- 1. Explain the active & passive microwave devices & components used in Microwave communication systems.
- 2. Analyze the multi- port RF networks and RF transistor amplifiers.
- 3. Generate Microwave signals and design microwave amplifiers.
- 4. Measure and analyze Microwave signal and parameters.

Name of Pro	ogram:	Bachelor of Technology.					
Branch:		Electronics & Telecommunication	Semester:	VII			
Subject:		Instrumentation & IoT	Code:	D028712(028)			
Total Theor	ory Periods: 40 Total Tutorial Ten (Minin Periods:						
Class Tests:		Two (Minimum)	Assignments:	2 (Minimum)			
ESE Duratio	on:	Three Hours	Max Marks:100	Min Marks: 35			
Course Objectives:							
The cou	arse intends to provi	de an overview of the principle	es, operation and application	on of the different transducer			
and se	nsors like, Resistive	, Inductive and capacitive tra	nsducers, Piezo-electric tr	ansducers and photo electric			
transdu	icers. And to equip the	he students with the basic and a	dvanced knowledge of Pre	ssure, Temperature, flow and			
The co	irse also intends to	understand about the fundamen	tals of Internet of Things a	and its building blocks along			
with th	eir characteristics&	understand the protocols and s	tandards designed for IoT	and the current research on			
it.& to	understand the recen	t application domains of IoT in	everyday life				
	Introduction to S	ensors & Transducer: Transd	lucer definition, classificat	ion, and Static and Dynamic			
	performance charac	performance characteristics of Transducer, selection criteria for sensors,					
UNIT I	Resistive: Piezo-resistive effect, Basics of Strain Gauge, Inductive: LVDT, RVDT, Capacitive:						
	Differential capacitance cell.						
	Pressure and Photoelectric Sensor: Pressure Measurement: Terminology, pressure units, manometers-						
	U-tube Single and double column, elastic pressure transducer: Bourdon Tube, Dead weight piston gauge.						
UNIT II	Piezoelectric transducer, photoelectric transducer: Photoconductive cell, Photo emissive cell and Photo						
	Voltaic Cell						
	Thermal and Flow Sensor: Temperature Measurement: Temperature scales units and relations,						
	Bimetallic thermometer, Resistance thermometers, Thermocouple: Its types & characteristics, Thermistor,						
UNIT III	radiation & optical pyrometers						
	Flow Sensors: Theory of variable head meters, constructional details of variable head meters-						
	Venturimeter, Flow Nozzle, Orifice flow meter, Pitot tube, Ultrasonic flow meter.						
	Introduction to In	ternet of Things: Introduction	to Internet of Things: Ov	erview of Internet of Things-			
	the Edge, Cloud and the Application Development, Industrial Internet of Things (MOT - Industry 4.0),						
UNIT IV	Quality Assurance, Predictive Maintenance, Real Time Diagnostics, Design and Development for IOT,						
	Understanding Syst	tem Design for IOT, Design Mo	odel for IOT.				
	Understanding In	nternet Protocols & Doma	in specific IOT: Simpl	ified OSI Model, Network			
	Topologies, Standa	ards, Types of Internet Netwo	rking - Ethernet, WiFi, L	local Networking, Bluetooth,			
UNIT V	Bluetooth Low E	nergy (BLE), Zigbee,6LoWP	AN, Sub 1 GHz, RFID,	NFC, Proprietary Protocols,			
	Simplicity, Networ	king Design - Push, Pull and Po	olling, Network APIs.				
	Domain specific IC	OT and their challenges: Illustra	ated domains-home automa	ation, smart cities, health and			

life style issues.

Text books:

- 1. Mechanical Measurements & Control, D.S.Kumar, Metropolitan Publication.
- 2. Electrical & Electronics Measurement & Instrumentation, A. K. Sawhney, Dhanpat Rai Publication.
- **3.** Foundational Elements of an IOT Solution The Edge, Cloud and Application Development, Joe Biron & Jonathan Follett, Oreilly media inc.
- 4. Internet of Things A Hands-On- Approach, Vijay Madisetti, Arshdeep Bahga, Orient Blackswan Private Limited.

REFERENCES:

1. "Measurement Systems Application and Design", fourth edition, Doebelin, E.O, McGraw Hill International.

2. The Internet of Things (A Look at Real World Use Cases and Concerns), Lucas Darnell, International Kindle paper white Edition

Course Outcomes:

On successful completion of the course, the student will be able to:

1. Be acquainted with different characteristics of Transducer and working of Resistive, Inductive and Capacitive Transducer.

2. To analyze constructional and operational features of different types of Pressure and Optical sensor.

3. To Analyze the constructional and operational features of different types of Thermal and Flow sensor.

4. To be acquainted with design and development issues of IOT.

5. To Analyze Internet protocol and design issues and use the IoT technologies in practical domains of society

Name of Pro	Program: Bachelor of Technology.				
Branch:	h: Electronics & Telecommunication		Semester:	VII	
Subject:		Wireless Communication	Code:	D028713(028)	
Total Theor	y Periods:	40	Total Tutorial Periods:	Ten (Minimum)	
Class Tests:		Two (Minimum)	Assignments:	2 (Minimum)	
ESE Duratio	on:	Three Hours	Max Marks:100	Min Marks: 35	
Course	Objectives:				
	Γo give students brief	history of the evolution of mobil	le communications through	out the world.	
2. 1	l o give knowledge of	cellular concepts and its designi	ng aspects.	٦	
	Fo familiarize student	s about GSM and advances in m	odern communication Tech	J. Inology	
5. 7	To educate students al	bout the useful limitations on the	performance of wireless co	ommunication systems.	
	Introduction to v	vireless communications: Evo	lution of Mobile Radio	Communication, Different	
	Wireless Communio	cation Systems. Comparison of V	Various Wireless Communi	cation System, Introduction	
UNIT I	to Modern Wireless Communicating System- Third Generation (3G) ,Fourth Generation (4G)and Fifth				
	(5G)Generation, Wireless in local loop, wireless local area networks, Blue tooth and Personal Area				
	networks, Over view of WIMAX Technologies, architecture, spectrum allocation				
	Cellular concept, hand off strategies, Interference and system capacity: Cell Splitting, Sectoring,				
	Repeaters, and Microcells. Cellular System Design Fundamentals: Frequency Reuse, channel assignment				
UNITI	strategies, handoff Strategies, Interference and system capacity, tracking and grade off service, improving				
	coverage and capacity				
	Wireless propagation mechanism, free space propagation model, ground Reflection model, knife edge				
	diffraction model, path loss prediction in hilly Terrain, introduction to fading and diversity techniques,				
UNIT III	Introduction to MIMO system, Channel Estimation in MIMO System, spatial diversity and spatial				
	multiplexing.				
	GSM system archi	tecture, radio link aspects, netwo	ork aspects Introduction to	new data services like High	
	Speed Circuit Switched Data (HSCSD), General Packet Radio Service (GPRS), Digital Enhanced Cordless				
	Telecommunications (DECT), Enhanced Data Rate for Global Evolution (EDGE), Ultra wideband				
UNITIV	systems (UWB), Push To Talk (PTT) technology, Mobile IP,				
	Modulation Techniques: Constant Envelop Modulation, MSK, GMSK, Combined Linear and Constant				
	Envelope Modulation Technique, MPSK, QAM,				
	Introduction to	Radio Wave Propagation: T	he basic Propagation M	echanisms: Reflection,	
	Diffraction, Scatte	ring .Path Loss, Shadowing,	Time dispersion, Time	Alignment, Wireless	
UNIT V	Networking, Differ	ence between wireless and fix	ed telephone networks, de	evelopment of wireless	
	networks, fixed net	twork transmission merarchy, tr	and routing in wireless	networks, wireless data	
	services, where ss s	tanuarus,			

Text books:

1. .Simon Haykin, Michael Mohar, Modern wireless communication, Pearson Education, 2008.

2. Theodore S. Rappaport: Wireless communication principles and practice, 2/e, Pearson Education, 1990

REFERENCES:

1. Jochen Schiller, Mobile Communications, Pearson, 2008.

- 2. Mishra, Wireless communications and Networks, McGraw Hill, 2/e, 2013.
- 3. Nathan, Wireless communications, PHI, 2012.
- 4. Singal, Wireless communications, Mc Graw Hill, 2010.
- 5. Tomasi, Advanced Electronic Communication Systems, 6/e, Pearson, 2015

Course Outcomes:

- 1. Students will have idea about the growth in mobile communications that gives rise to technological improvements.
- 2. Students will be able to visualize the use of frequency reuse to increase the systems capacity and also other designing aspects.
- 3. Students will be able to understand the architecture of the GSM and mechanism to support mobility of the GSM terminals.
- 4. Students will see how modulation techniques are used to transport the message signal via a radio channel with best possible quality with minimum radio spectrum.
- 5. Students will be able to understand various transmission problems and their counter measures

Name of Program:	Bachelor of Technology.		
Branch:	Electronics & Telecommunication	Semester:	VII
Subject:	Microwave Engineering Lab	Code:	D028721(028)
Total Lab Periods	36	Batch Size	30
Max Marks	40		Min Marks: 20

List of Experiments: (At least Ten experiments are to be performed by each student)

- 1. V-I characteristics of Gunn diode and to measure output power and frequency vs voltage.
- 2. Study of different characteristics of klystron amplifier
- 3. Study of different characteristics of reflex klystron amplifier and hence to determine mode number, transit time, Electronic Tuning Sensitivity(ETS) and Electronic Tuning Range (ETR).
- 4. Measurement of Q of a cavity.
- 5. To determine the standing wave ratio and reflection coefficient.
- 6. To study the characteristic and behavior of a Magic Tee.
- 7. Determination of S matrix of Magic Tee, E plane Tee & H plane Tee
- 8. To study the characteristics and behavior of Isolator and Circulators
- 9. To study the characteristics and behavior of Attenuator(fixed and variable type).
- 10. To measure the VSWR at all the three open ports of a Directional Coupler.
- 11. To measure the Coupling Factor, directivity and insertion loss of a Directional Coupler.
- 12. To measure Microwave Frequency using Frequency Meter.
- 13. To study various Frequency measurements techniques.
- 14. To measure VSWR using various methods
- 15. To measure Attenuation
- 16. Impedance measurement techniques
- 17. To study and measure square wave modulation through PIN voltage.
- 18. To energize a GUNN Oscillator.
- 19. To energize a Reflex Oscillator.
- 20. To calibrate Phase Shifter.
- 21. To measure Dielectric Constant.

List of Equipments Required: Microwave source, Isolator, Variable attenuator, Fixed Attenuator, Frequency meter, Slotted line, Tunable probe, Circulators, Matched terminations, Gunn/Klystron power supply, Detector mount, Cooling fan, Magic Tee, Phase shifter, Movable short, Dielectric Material.

Name of Program:	Bachelor of Technology.		
Branch:	Electronics & Telecommunication	Semester:	VII
Subject:	Instrumentation & IoT Laboratory	Code:	D028722(028)
Total Lab Periods	36	Batch Size	30
Max Marks	40		Min Marks: 20

List of Experiments: (At least Ten experiments are to be performed by each student)

1. Measurement of linear displacement using Linear Variable Differential Transformer (LVDT).

- 2. To study LVDT as displacement transducer and observe displacement versus output voltage characteristics.
- 3. To study measurement of humidity using Humidity Transmitter set up.
- 4. To study the characteristics of IC temperature sensor (LM 335).
- 5. To study the characteristics of NTC Thermistor.
- 6. To study the characteristics of Temperature Sensor Setup (Thermocouple, RTD, Thermistor Setup). 11. To study working of Pressure sensor (Piezo resistive/strain) and to observe characteristics of air pressure versus output voltage.
- 7. To study Dead Weight Pressure Gauge Tester.
- 8. To study calibration of flow meters setup with Electromagnetic Flow Meter.
- 9. To measure liquid flow using Orifice, Ventury, Rotameter and Turbine type flow sensor.
- 10. To study the characteristics of Filament Lamp.
- 11. To study the characteristics of Photovoltaic Cell.
- 12. To study the characteristics of Photoconductive Cell.
- 13. Measurement of displacement using Light Dependent Resistor (LDR).
- 14. To study Rotary Encoder for speed and angular measurement.
- 15. To study Strain gauge working as displacement sensor.
- 16. Interfacing Arduino to GSM module
- 17. Interfacing Arduino to Bluetooth Module
- 18. Introduction to Raspberry PI platform and python programming
- 19. Interfacing sensors to Raspberry PI
- 20. Communicate between Arduino and Raspberry PI using any wireless medium

Name of Program:	Bachelor of Technology.		
Branch:	Electronics & Telecommunication	Semester:	VII
Subject:	Digital Circuit Design with Verilog HDL (Professional Elective III)	Code:	D028731(028)
Total Theory Periods:	40	Total Tutorial Periods:	Ten (Minimum)
Class Tests:	Two (Minimum)	Assignments:	2 (Minimum)
ESE Duration:	Three Hours	Max Marks:100	Min Marks: 35

Course Objectives:

1. To understand basics of Verilog HDL Language, including its use in synthesis of digital designs.

2. To gain knowledge of modeling, simulation and verification of designs with Verilog HDL

3. To understand combinational circuit design of digital systems with Verilog HDL.

4. To understand sequential circuit design of digital systems with Verilog HDL.

5. To understand designing using Mealy State and Moore State Model.

	Overview of Digital Design with Verilog-HDL: Emergence of HDLs, Typical Design Flow, Importance			
UNIT I	of HDLs, Popularity of Verilog HDLs. Design Methodologies, Modules, Instances, Lexical conventions,			
	Data Types, System Tasks and Compiler directives.			
	Modeling in Verilog- HDL: Modules and Ports, Gate- Level Modeling: Gate Types, Gate Delays; Data			
	flow Modeling: Assignment Statement, Delays, Expressions, Operator Types, Operands; Behavioral			
UNIT II	Modeling: Structured Procedures, Procedural Assignment, Timing Controls, Conditional Assignment			
	Statements, Loops, Sequential and Parallel, Blocks, Generate Blocks.			
	Combinational Circuit Design: Multiplexers, Demultiplexers, Encoder, Decoders, Code Converters,			
UNIT III	Arithmetic Comparisons Circuits, Tasks and Functions.			
	Sequential Circuit Design: Flip-Flops: SR, JK, T and D; Registers: Shift Registers, Parallel Access Shift			
UNIT IV	Registers; Counter: Asynchronous Counters, Synchronous Counters, Counters with Parallel load, BCD			
	counter.			
	FSM: Basic Design Steps, State Diagram, State Table, State Assignment, State Assignment Problem,			
UNIT V	One Hot Encoding, Mealy State Model, Moore State Model, Design Example: Serial Adder, Vending			
	Machine, Bus Architecture.			
l ext books:				
1. V	1. VERILOG HDL: A Guide to Digital and Synthesis, IEEE1364-2001 Compliant, Samir Palnitkar,			
Pe	earson Ed.			

2. Fundamentals of Digital Logic with Verilog Design, Stephen Brown & Zvonko Vranesic, The McGraw-Hill.

- 1. Design Through Verilog- HDL, T. R. Padmanbhan and B. Bala Tripura Sundari; IEEE Press
- 2. Verilog HDL Synthesis: A Practical Primer, J. Bhasker PHI.

Course Outcomes :

Students will be able to:

- 1. Use VLSI design methodologies to understand and design complex digital systems.
- 2. Create circuits that realize specified digital functions.
- 3. Identify logic and technology-specific parameters to control the functionality, timing, power, and parasitic effects.
- 4. Complete a significant VLSI design project having a set of objective criteria & design constraints.

Name of Pro	e of Program: Bachelor of Technology.				
Branch:		Electronics &	Semester:	VII	
Cubicati		Adaptive Signal Processing	Coder	D039723(039)	
Subject:		(Professional Elective III)	Code:	D028732(028)	
Total Theor	y Periods:	40	Total Tutorial Periods:	Ten (Minimum)	
Class Tests:		Two (Minimum)	Assignments:	2 (Minimum)	
ESE Duratio	on:	Three Hours	Max Marks:100	Min Marks: 35	
Course	Ohiaatimaa				
Course	Objectives:		с · т		
I. Unde	erstand the concepts	of gradient and mean square er	ror performance in adap	ptive systems	
2. Expla	ain gradient descent	algorithms and gradient estimation	te		
3. Deriv	ve LMS algorithms	and formulate conditions of cor	ivergence		
4. Expl	ain applications of a	adaptive signal processing			
	Introduction: Ada	ptive Systems – Definition and c	haracteristics, General pr	operties, Open and Closed	
UNIT I	Loop Adaptations,	Applications. The Adaptive Line	ear Combiner: Performar	nce function, Gradient and	
	Mean Square Error, Examples.				
	Theory of Adapta	ation with Stationary Signals:	Properties of the Quadr	atic Performance Surface,	
	Significance of eigen values, eigen vectors, correlation matrix.				
UNIT II	Searching the Performance Surface: Basic ideas of gradient search A simple gradient search algorithm,				
	Stability and Rate of convergence, the learning curve. Newton's method, Steepest descent method,				
	Comparison.				
	Gradient Estimation and its effects on adaptation: Gradient component estimation by derivative				
	measurement, The performance penalty, Variance of the gradient estimate, Misadjustment.				
UNIT III	Adaptive Algorithms and Structures: The LMS Algorithm, Derivation, Convergence of the weight				
	vector, learning Curve, Performance analysis, Filtered X LMS algorithm.				
	Adaptive Lattice p	redictor, Adaptive filters with o	rthogonal signals. Appli	cations of Adaptive signal	
UNIT IV	processing: Adaptive modeling of a multi-path communication channel, adaptive model in geophysical				
	exploration, Adaptive interference canceling: applications in Bio-signal processing.				
	Adaptive Control	Systems using Filtered X LMS	Algorithm, Adaptive No	ise Cancellation using	
UNIT V Adaptive filter, Adaptive Modeling and System Identification using adaptive filter, Inve			daptive filter, Inverse		
	Adaptive Modeling, Deconvolution, and equalization using adaptive filter.				
Text books:					
1. Ada	aptive Signal Process	ing, Bernard Widrow and Samuel	D. Stearns, Pearson Educa	ation, 2nd impression,	
20 2 Sir	09. non Havkin Adaptive	Filter Theory Fourth Edition Pren	tice Hall		
3. B.	Widrow and S. D. St	erns Adaptive Signal Processing P	Pearson Education		

- 1. M. J. Larrimore, C. R. Johnson and J. R. Treichler Theory and Design of Adaptive Filters
- 2. Ingle and Kogon Manalokis, Statistical and Adaptive signal processing- Artech House INC., 2005.
- 3. Sayed A H, Adaptive filters-, John Wiley.
- 4. Poularikas A, Z M Ramadan, Adaptive filtering primer with MATLAB –, Taylor and Francis Publications.

Course Outcomes

After the course the student will be able to

- 1. Understand the concepts of gradient and mean square error performance in adaptive systems
- 2. Apply gradient descent algorithms, gradient estimate and LMS algorithms in adaptive systems
- 3. Formulate conditions of convergence
- 4. Implement applications of adaptive signal processing
- 5. To design adaptive filters for different applications

Name of Pro	ogram:	Bachelor of Technology.				
Branch:		Electronics & Telecommunication	Semester:	VII		
Subject:		Industrial Automation (Professional Elective III)	Code:	D028733(028)		
Total Theor	y Periods:	40	Total Tutorial Periods:	Ten (Minimum)		
Class Tests:		Two (Minimum)	Assignments:	2 (Minimum)		
ESE Duratio	on:	Three Hours	Max Marks:100	Min Marks: 35		
~						
 Course Objectives: 1. To develop and apply Mathematical and Engineering skills to identify, formulate and solve industrial process problems. 2. This subject seeks to close the gap between Instrumentation and Mechanical Engineering. 3. This subject provides the knowledge of different types of controller & their applications. 4. This subject provides the basic knowledge of PLC and DCS. 				olve industrial process ng. s.		
	Introduction to Pr	cocess Control: Process Control	Block Diagram, Control	System Evaluation, Digital		
	Control, Supervisor	ry Control, Direct Digital Control	ol, Networked Control Sy	ystems, Distributed Digital		
UNIT I	Control, Smart Sensor, Definitions of the terms used to describe Process Control. Data Acquisition					
	Systems: DAS Hardware, DAS Software, Data Logger.					
	Controller Principles: Process Characteristics, Process Equation, Process Load, Process					
	Regulation, Control System Parameters: Error, Variable Range, Control Parameter Range, Control Lag,					
	Dead Time, Cycling, Controller Modes: Discontinuous Controller Mode, Two Position Mode, Multi					
UNIT II	Position Mode, Floating Control Mode, Continuous Control Mode, Proportional Control Mode, Integral					
	Control Mode, Derivative Control Mode, Composite Control Modes: PI Control, PD Control, PID					
	Control.					
	Analog Controller	s: Introduction, Electronic Con	ntrollers: Error Detector,	Single Controller Modes,		
UNIT III	Composite Controll	er Modes, Pneumatic Controllers:	General features, Mode In	mplementation.		
	Programmable Lo	ogic Controller: PLC Architec	ture, Basic Structure, P	LC Programming: Ladder		
	Diagram, Ladder Diagram symbols, Ladder Diagram circuits, PLC Communications and Networking,					
UNIT IV	PLC Selection, I/O Quantity and Type, I/O Remoting requirements, Memory size and type, Programmer					
	Units, PLC Installation, Advantages of using PLCs.					
	Distributed Contro	ol System: Introduction, Overview	w of Distributed Control S	Systems, DCS Software		
UNIT V	configuration, DCS	Communication, DCS Superviso	ry Computer Tasks, DCS	Integration with PLCs		
Torrt baalure	and Computers, Fea	tures of DCS, Advantages of DCS	•			
1 ext DOOKS:						
1.Proc	cess Control Instrume	s Control by S K Singh PHI	son, PHI			
2. 00	Computer Aided Process Control by S. K. Singn, PHI					

1. Reference Books: 1.IntroductiontoInstrumentation&Controlby A.K. Ghosh,Eastern Economy Edition 2.IntelligentInstrumentation, by George C.Barney, Prentice Hall India.

Course Outcomes:

The students will be able to:

- 1. Understand process variables, degrees of freedom, and Self regulation, first & second order Process System.
- 2. Know the importance of on-off, proportional, integral and derivative modes, composite control modes-PI, PD and PID controllers.
- 3. Understand, Communication in DCS, DCS system integration with PLC and computers, Data loggers, Data Acquisition systems (DAS), computer control hierarchy levels and Direct Digital control (DDC).

Name of Pro	ogram:	Bachelor of Technology.			
Branch:		Electronics & Telecommunication	Semester:	VII	
Subject:		Speech and Audio Processing (Professional Elective III)	Code:	D028734(028)	
Total Theor	y Periods:	40	Total Tutorial Periods:	Ten (Minimum)	
Class Tests:		Two (Minimum)	Assignments:	2 (Minimum)	
ESE Duration	n:	Three Hours	Max Marks:100	Min Marks: 35	
To provi speech an introduce the desig	Objectives: de an introduction to b nd music. To provide e software tools for th n and implementation	basic concepts and methodologies a foundation for developing applic e analysis and manipulation of spe of speech and music processing a	for the analysis, mode cations and for further ech and music and to g loorithms	ling, synthesis and coding of study in the field. To gain practical experience in	
	Introduction: Ana	tomy and physiology of speech pr	oduction, categorizati	on of speech sounds, Prosody,	
UNIT I	Parameters of Speed	ch: Pitch and Formants.		1	
	Analysis and Synt	hesis of Speech and Audio sign	nals: Spectral Analy	sis Models, Linear Predictive	
	Coding Model for S	Speech Recognition, The autocorre	elation method, The co	ovariance method, Short-Time	
UNIT II	Fourier Transform	Analysis and Synthesis, Short-	Time Fourier Transf	orm Magnitude, Filter Bank	
	Summation method,	Overlap-Add method.			
Frequency Domain Pitch Estimation: A correlation-based Pitch Estimator, Pitch Estimation bas					
UNIT III Comb Filter, Pitch Estimation based on a Harmonic Sine wave Model.					
Speech Coding Vector Quantization, Frequency-Domain Coding, Model-based Coding. Enhancement					
UNIT IV	Speech and Audio S	ignals Spectral subtraction, Cepstr	al Mean Subtraction,	Wiener Filtering.	
UNIT V	Speaker Recognition classifier, Gaussian	ion Spectral Features required Mixture Model.	for Speaker Recogni	tion, Minimum Distance	
Text books:					
1. L.R.	Rabiner, R. W. Schaf	er, Theory and Applications of Dig	gital Speech Processin	g, Prentice Hall	
2. B. G Musi	old, N. Morgan, D. E. ic, Wiley-Blackwell	llis, Speech and Audio Signal Proc	essing: Processing and	l Perception of Speech and	
3. Ian V	Vince Mcloughlin. Sp	eech and Audio Processing: A MA	TLAB-based Approac	h, Cambridge University	
REFERENC					
1 T D	utoit F Marqués L F	Rahiner Annlied signal processi	ng: a MATI AR-based	Proof of Concept Springer	
2. T.F.	Quartieri, Discrete-Ti	me Speech Signal Processing: Prir	nciples and Practice, P	rentice Hall	
Course Outo	comes: At the end of omprehend the speech	the course, the students will be a production and hearing models.	able to		
2. De	2. Design and apply models for speech and audio signal processing.				
3. Aj	pply speech coding, sp	peech enhancement and speaker re-	cognition algorithms f	or speech and audio	
pr	processing.				
4. In	plement the methods	for speech enhancement and speec	ch coding for speech si	ignals.	

Name of Pr	ogram:	Bachelor of Technology.				
Branch:		Electronics &	Semester:	VII		
		Telecommunication Power Electronics				
Subject:		(Professional Elective III)	Code:	D028735(028)		
Total Theor	v Periods	40	Total Tutorial	Ten (Minimum)		
			Periods:			
Class Tests:	n:	Two (Minimum)	Assignments:	2 (Minimum) Min Marke: 35		
Course	Objectives:		IVIAN IVIAIKS.100	Will Warks. 55		
1. To ur	derstand basic know	wledge of Thyristor family men	nbers.			
2. To ur	derstand the variou	s firing schemes for convertors.				
3. To ur	derstand the operation	ion of power conditioning circu	its.			
	Silicon Controlled	Rectifiers: Introduction to So	CR and its Construction	, Principle of Operation,		
	Characteristics & S	CR Terminologies, Two-Transisto	r Analogy of SCR.			
UNIT I	General idea of	Modern Power Semiconduct	or Devices: Power Di	ode, Power BJT, Power		
	MOSFET,GTO, DI	AC, TRAIC, IGBT, SIT, SITH, M	ICT, SUS, SBS, SCS.			
	Switching and Tr	iggering of SCRs: Different M	lethods of Turning-ON	& Turning-OFF of SCRs,		
	Typesof Triggering	Typesof Triggering Circuits, Series & Parallel Operation of SCRs.				
UNIT II	Phase Controlled Rectifier I: Phase Angle Control Techniques, Classification of Converter,					
	Single Phase Half and Full Wave Converters with R, RL and RLE Loads					
	Phase Controlled	Rectifier II: Symmetrical and As	ymmetrical Bridge Conve	erters with R and RL Load,		
	Three-Phase three and six pulse Converters, Three-phase fully Controlled Bridge Converters, Dual					
UNITII	Converters: Phase Controlled Dual Converter, Single-Phase Dual Converter, Three-Phase Dual Converter,					
	Circulating Current Type Dual Converter: Mid-Point Configuration & Dual Bridge Configuration.					
	Power Conditionin	ng Circuits I: Inverters: Single F	Phase - Half and Full Brid	ge Inverter with R and RL		
	Load, 3-Phase Bridge Inverter, Mcmurray Full Bridge Inverter.					
UNIT IV	Choppers: Principle of Operation, Chopper Control Technique, Voltage Step-Down (Buck) Chopper &					
	Step-Up (Boost) Chopper, Buck-Boost Chopper, Jones Chopper.					
	Power Conditioning Circuits II: A C Voltage Controller: Types of Power Control, Integral Cycle					
	Control, Full Wave AC Voltage Regulator with R and RL, TRIAC based AC Voltage Regulators,					
UNIT V	Cycloconverters: Single Phase to Single Phase: Midpoint Configuration & Bridge Configuration,					
	Three Phase to Sing	le Phase Cyclo converter: Circulat	ing Current Type, Non-Cir	rculating Current Type.		
Text books:						
1. Industrial Electronics & Control by B. Paul, PHI.						
2. Power Electronics by M. D. Singh, Khanchandani, TMH.						
5.	Power Electronics by	P.S Bhimbra, Khanna publications	8			

- 1. Industrial & Power Electronics by H.C. Rai, Umesh Publications.
- 2. Power Electronics by K. Hari Babu, SCITECH Publications.
- 3. Power Electronics by P.C. Sen, TMH.

Course Outcomes:

- 1. Students will be able to understand the controlled and uncontrolled rectifications.
- 2. Students will be able to understand phase control operation of different power electronics devices.
- 3. Students will be able to understand mechanism of invertors and choppers.
- 4. Students will be able to understand mechanism of cyclo converters and AC voltage controllers.

Name of the Program: Bachelor of Technology Semester: B. Tech – 7th Subject: Universal Human values 2 Total Marks in End Semester Exam:

Branch: ET&T Course Code: D000701(046) L: T: P: 2 Credits: 0

Course Objective(s):

- Development of a holistic perspective based on self- exploration about themselves (human being), family, society and nature/existence.
- Understanding (or developing clarity) of the harmony in the human being, family, society and nature/existence
- Strengthening of self-reflection.
- Development of commitment and courage to act.

UNIT-I Introduction- Need, Basic Guidelines, Content and Process for Value Education

- Purpose and motivation for the course, recapitulation from Universal Human Values-I.
- Self-Exploration–what is it? Its content and process; 'Natural Acceptance' and Experiential Validation- as the process for self-exploration.
- Continuous Happiness and Prosperity- A look at basic Human Aspirations
- Right understanding, Relationship and Physical Facility- the basic requirements for fulfillment of aspirations of every human being with their correct priority.
- Understanding Happiness and Prosperity correctly- A critical appraisal of the current scenario
- Method to fulfill the above human aspirations: understanding and living in harmony at various levels.
- Include practice sessions to discuss natural acceptance in human being as the innate acceptance for living with responsibility (living in relationship, harmony and co-existence) rather than as arbitrariness in choice based on liking-disliking.

UNIT-II Understanding Harmony in the Human Being - Harmony in Myself!

- Understanding the needs of Self ('I') and 'Body' happiness and physical facility.
- Understanding the Body as an instrument of 'I' (I being the doer, seer and enjoyer).
- Understanding the characteristics and activities of 'I' and harmony in 'I'.
- Understanding the harmony of I with the Body: Sanyam and Health; correct appraisal of Physical needs, meaning of Prosperity in detail.
- Programs to ensure Sanyam and Health.
- Include practice sessions to discuss the role others have played in making material goods available to me. Identifying from one's own life.
- Differentiate between prosperity and accumulation. Discuss program for ensuring health vs dealing with disease

UNIT-III Understanding Harmony in the Family and Society- Harmony in Human-Human Relationship

• Understanding values in human-human relationship; meaning of Justice (nine universal values in relationships) and program for its fulfilment to ensure mutual happiness; Trust and Respect as the foundational values of relationship

- Understanding the meaning of Trust; Difference between intention and competence
- Understanding the meaning of Respect, Difference between respect and differentiation; the other salient values in relationship
- Understanding the harmony in the society (society being an extension of family): Resolution, Prosperity, fearlessness (trust) and co-existence as comprehensive Human Goals
- Visualizing a universal harmonious order in society- Undivided Society, Universal Order- from family to world family.
- Include practice sessions to reflect on relationships in family, hostel and institute as extended family, real life examples, teacher-student relationship, goal of education etc. Gratitude as a universal value in relationships. Discuss with scenarios. Elicit examples from students' lives.

UNIT-IV Understanding Harmony in the Nature and Existence - Whole existence as Coexistence

- Understanding the harmony in the Nature
- Interconnectedness and mutual fulfilment among the four orders of nature- recyclability and self-regulation in nature.
- Understanding Existence as Co-existence of mutually interacting units in all-pervasive space.
- Holistic perception of harmony at all levels of existence.
- Include practice sessions to discuss human being as cause of imbalance in nature (film "Home" can be used), pollution, depletion of resources and role of technology etc.

UNIT-V Implications of the above Holistic Understanding of Harmony on Professional Ethics

- Natural acceptance of human values
- Definitiveness of Ethical Human Conduct
- Basis for Humanistic Education, Humanistic Constitution and Humanistic Universal Order
- Competence in professional ethics: a. Ability to utilize the professional competence for augmenting universal human order b. Ability to identify the scope and characteristics of people friendly and eco-friendly production systems, c. Ability to identify and develop appropriate technologies and management patterns for above production systems.
- Case studies of typical holistic technologies, management models and production systems
- Strategy for transition from the present state to Universal Human Order:
 - At the level of individual: as socially and ecologically responsible engineers, technologists and managers
 - At the level of society: as mutually enriching institutions and organizations
- Include practice Exercises and Case Studies will be taken up in Practice (tutorial) Sessions e.g. to discuss the conduct as an engineer or scientist etc.

Text Books:

- 1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.

Reference Books:

- 1. The Story of Stuff (Book).
- 2. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi.
- 3. Small is Beautiful E. F Schumacher.

Course Outcome:

After completion of course, student should be able to

- To become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.
- They would have better critical ability. They would also become sensitive to their commitment towards what they have understood (human values, human relationship and human society). It is hoped that they would be able to apply what they have learnt to their own self in different day-to- day settings in real life, at least a beginning would be made in this direction.